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Abstract

Motivated by a concrete experimental setting in
the Paleomagnetism lab at EAPS department
of MIT, we consider a particular instance of the
inverse magnetisation problem. If the measure-
ment area was large, a set of explicit asymptotic
estimates could be used to estimate the net mag-
netisation of a sample. In particular, new high-
order estimates could be used to mitigate the
large-measurement-area assumption. However,
these formulae are less stable with respect to
noise which obstructs their direct use in prac-
tice. As a remedy, when the magnetisation dis-
tribution is planar andW 1,2-regular, we propose
a method to extrapolate the measurements to a
larger area and denoise them at the same time.
Keywords: paleomagnetism, inverse source prob-
lems, ill-posed problems, extrapolation

1 Introduction

The process of extraction of relict magnetic in-
formation from georocks and meteorites is a chal-
lenging but important task in paleomagnetic re-
search. Due to the weak intensity of the field
produced by a magnetised rock, the measure-
ments have to be performed in the direct vicinity
of the sample and using highly sensitive mag-
netometric devices such as SQUID (supercon-
ducting quantum interference device) and QDM
(quantum diamond microscope). The basic quan-
tity of interest is the net magnetisation (mag-
netisation moment vector). Reconstruction of
this quantity hinges on effective processing of
the experimental data, with the main challenges
being the limited measurement area and the noise
contamination.

In an experimental setup at EAPS, MIT,
only the component B3 of the magnetic field ~B
is measured on a portion of the orthogonal plane
at distance h above a sample with unknown
magnetisation distribution ~M≡ (M1,M2,M3)

T

supported on a compact set Q ⊂ R3. These

quantities are related as

B3 (x, h) =
1

4π

∂

∂h

∫
Q

∇ · ~M (t, t3) d
3t(

|x− t|2 + (h− t3)2
)1/2 ,
(1)

where we used the notation x ≡ (x1, x2)
T . The

problem of reconstuction of ~M fromB3 is known
to be severely ill-posed [1]. However, a quantity
of principal interest that (at least in theory) can
be uniquely defined from B3 is the net magneti-
sation vector

~m ≡ (m1,m2,m3)
T :=

∫
Q

~M (~x) d3x.

2 Some asymptotic results

When the measurement area DA is the disk of a
large radius A, the estimates of components of
the net magnetisation vector are known [2]:

m1,2 = 2

∫
DA

x1,2B3 (x, h) d
2x+O

(
1

A

)
,

m3 = 2A

∫
DA

B3 (x, h) d
2x+O

(
1

A2

)
.

One can also obtain and rigorously prove anal-
ogous asymptotic estimates of higher orders [3].
For example, a 4th-order formula for m3 reads:

m3 =
A

24

∫
DA

[
35 + 1792

(xj
A

)6
−3200

(xj
A

)8]
B3 (x, h) d

2x+O
(

1

A4

)
,

where xj is either x1 or x2.

3 Field extrapolation method

Even though they are destined to be beneficial
for a smaller measurement region, high-order
asymptotic formulas are much more unstable
with respect to noise. In order to improve their
robustness, we propose to extrapolate the field
in the measurement plane while mitigating the



WAVES 2024, Berlin, Germany 2

effects of the noise. Here, we assume that mag-
netisation is planar, i.e. ~M (~x) = ~M (x)⊗δ (x3),
where δ is the Dirac’s delta, ~M ∈

[
W 1,2

(
R2
)]3,

supp ~M ⊂ Q0 ⊂ R2 and Q0 is a bounded re-
gion in the measurement plane above the sam-
ple where the data are available. Note that the
assumption on the magnetisation being planar
is consistent with the experimental setup where
a magnetic rock is sliced into a thin slab.

In order to obtain the extrapolated field Bext
3

defined on Q̃0 from the measured field Bmeas
3 de-

fined on Q0, we propose the following strategy.
Step 1: Construct a special set of basis func-

tions (ϕn)
∞
n=1 ⊂ L2 (Q0) related to integral oper-

ators of the direct problem (1). More precisely,
ϕn are solutions (for appropriate eigenvalues λn)
of the integral equation

K1 ?χQ0ϕn+K2 ?χQ0R [ϕn] = λnϕn on Q0,
(2)

where χQ0 is the characteristic function of Q0,

Kj (x) :=
∂j−1

∂hj−1
−h

4π
(
|x|2 + h2

)3/2 , j ∈ {1, 2} ,

R [f ] (x) :=

∫
Q0

R (x, t) f (t) d2t, f ∈ L2 (Q0) ,

with R (x, t) approximately satisfying∫
Q0

K1 (y − t)R (x, t) d2t = K2 (x− y) ,

for any x, y ∈ Q0.
Step 2: Approximate the measured field by

the expansion

Bmeas
3 (x) '

N∑
n=1

bnϕn (x) , x ∈ Q0,

bn = 〈Bmeas
3 , ϕn +R?R [ϕn]〉L2(Q0)

, (3)

where R? is the operator adjoint to R and the
number N is chosen based on a compromise be-
tween the approximation quality and the data
fidelity (noise level in Bmeas

3 ).
Step 3: Compute the extrapolant:

Bext
3 (x) =

N∑
n=1

bnϕ̃n (x) , x ∈ R2,

where bn are as in (3), and the functions

ϕ̃n :=
1

λn
(K1 ? χQ0ϕn +K2 ? χQ0R [ϕn]) ,

Figure 1: Original field Bmeas
3 contaminated

with 5% of additive Gaussian white noise [top]
and Bext

3 , its denoised version extrapolated to a
100 times larger area [bottom].

are all defined on R2 as are K1, K2 since ϕn on
Q0 are already found from (2). Note that we
obviously have ϕ̃n|Q0

= ϕn.
Figure 1 provides numerical illustration of

the extrapolation algorithm with denoising.
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