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Introduction

SQUID microscope (EAPS, MIT)

The process of extraction of relict magnetic information from georocks and meteorites
is a challenging task. Due to the weak intensity of the field produced by the remanent
magnetisation of a rock, the measurements have to be performed in direct vicinity of a
sample and using highly sensitive magnetometric devices such as SQUID and QDM. Full
reconstruction of the magnetic distribution (3D vector field) from partial measurements
of only one component of the magnetic field is difficult and often replaced by estimation
of the net magnetisation of a sample. We show some explicit asymptotic results for
the latter problem, but observe that the lack of measured data and the presence of
noise still remain an issue. We are thus motivated to consider the problem of stable
extrapolation of magnetic field measurements. Slice of a magnetised sample (basalt)

1. Setting

I Unknown sample magnetisation:

~M (~x) ≡ (M1,M2,M3) (x, x3) ,

with supp ~M⊂ Q, |Q| <∞,

x ≡ [x1, x2]
T , ~x ≡ [x, x3]

T . Geometry of the model

I Measured component of the magnetic field:

B3 (x, h)=
1

4π

∂

∂h

∫∫∫
Q

∇ · ~M (t, t3)(
|x− t|2 + (h− t3)2

)1/2
d3~t, x ∈ R2.

[
~B = −∇Φ outside Q, ∆Φ = ∇ · ~M in R3

]
I Recovery ~M (~x)← B3 (x, h) is a severely ill–posed problem:

. The range of the mapping ∇ · ~M 7−→ B3 is not closed.

. The mapping ~M 7−→ ∇ · ~M is not injective.

I Net magnetisation ~m :=
∫∫∫

Q
~M (~x) d3~x is unique and important.

2. Net magnetisation: asymptotic results

We can asymptotically estimate (explicitly and to an arbitrary order)

~m← B3 (·, h)|DA
, DA :=

{
x ∈ R2 : |x| < A

}
, A� 1.

For example, 3rd–order estimates are given by

mj =
2

5

∫∫
DA

[
5 + 24

(xj
A

)4
]
xjB3 (x, h)d2x+O

(
1

A3

)
, j ∈ {1, 2},

m3 =
A

4

∫∫
DA

[
5 + 40

(xj
A

)4

− 128
(xj
A

)6
]
B3 (x, h)d2x+O

(
1

A3

)
.
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Recovery of m1, m2, m3 (left to right) for the case of pure (top) and contaminated (bottom) field
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3. Overcoming the data limitation

Experimental limitations

I Measurements are available on a fairly small planar area.

I Only one component of the field ~B is measured: B3.

I Away from sample, the data is heavily contaminated by noise.

Assumptions

I Planar regular magnetisation:
M (~x) = ~M (x)⊗ δ (x3),
supp ~M ⊂ Q0 ⊂ R2,
~M ∈

[
W 1,2

(
R2
)]2 × L2

(
R2
)

.

I B3 is measured over Q0.

h

Geometry of the extrapolation problem

Extrapolation of measurements

I We mainly aim to extrapolate B3 on the plane:

B3 (·, h)|Q0
=: Bmeas

3 7−→ Bext
3 := B3 (·, h) on R2.

I B1, B2 can be reconstructed from Bext
3 by suitable bounded integral

operators. Moreover, we can obtain ~B on the half–space {x3 > h}.
I Extrapolation should at least be stable w.r.t. high–frequency noise.

4. Extrapolation method and results

1. Fix J , N ∈ N+ sufficiently large.

2. Solve K12 ?Q0
φj = µjφj on Q0.

⇒ J largest (µj)
J
j=1 ⊂ R+ and

(φj)
J
j=1 ⊂ L2

R (Q0), ‖φj‖ = 1.

3. Compute on Q0 ×Q0

SJ (x, t) :=
∑J

j=1
〈K12(·−x),φj〉

µj
φj (t) .

4. Solve on Q0{
K12 ?Q0

ϕn12 + K3 ?Q0
ϕn3 = λnϕ

n
12,

K12 ?Q0
ϕn12 + SJK3 ?Q0

ϕn3 = λnϕ
n
3 .

⇒ N largest in modulus (λn)Nn=1 ⊂ R

and
(

[ϕn12, ϕ
n
3 ]T
)N
n=1
⊂
[
L2
R (Q0)

]2
,

‖ϕn12‖
2 + ‖ϕn3‖

2 = 1.

5. Construct Bext
3 (x) =

∑N
n=1 bnϕ̃

n
12 (x),

bn := 〈Bmeas
3 , ϕn12〉 + 〈SJBmeas

3 , ϕn3〉 ,
ϕ̃n12 (x) := 1

λn

∫∫
Q0

[K12 (x− t)ϕn12 (t)

+K3 (x− t)ϕn3 (t)] d2t, x ∈ R2.

B3 = K12 ?Q0
DM12

+K3 ?Q0
M3

Notations

K12 (x) := − h

4π(|x|2+h2)
3/2,

K3 (x) := ∂hK12 (x) ,

DM12
(x) := ∂1M1 (x) + ∂2M2 (x) ,

(K ?Q0
f ) (x) ≡

∫∫
Q0
K (x− t) f (t) d2t,

(SJf ) (x) :=
∫∫

Q0
SJ (x, t) f (t) d2t,

〈f, g〉 ≡
∫∫

Q0
f (t) g (t) d2t.
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Support of ~M contained in Q0 := [−1, 1]2

Original Bmeas
3 (left), extrapolated field Bext

3 (middle) and extrapolation error (right) on [−10, 10]2
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