archives-ouvertes

High-order time integration Leap-Frog schemes
combined with a discontinuous Galerkin method for the
solution of the Maxwell equations

Dmitry V. Ponomarev

» To cite this version:

Dmitry V. Ponomarev. High-order time integration Leap-Frog schemes combined with a discontinuous
Galerkin method for the solution of the Maxwell equations. [Research Report] RR-7067, INRIA. 2009,

pp.91. <inria-00424560>

HAL Id: inria-00424560
https://hal.inria.fr /inria-00424560
Submitted on 16 Oct 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.inria.fr/inria-00424560
https://hal.archives-ouvertes.fr

%I 1IN RIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

High-order time integration Leap-Frog schemes
combined with a discontinuous Galerkin method for

the solution of the Maxwell equations

Dmitry V. Ponomarev

N° 7067

Septembre 2009

Théme NUM

apport
de recherche

ISRN INRIA/RR--7067--FR+ENG

ISSN 0249-6399

% I N RIA

SOPHIA ANTIPOLIS

High-order time integration Leap-Frog schemes combined
with a discontinuous Galerkin method for

the solution of the Maxwell equations

Dmitry V. Ponomarev*

Théme NUM — Systémes numériques

Projet NACHOS

Rapport de recherche n° 7067 — Septembre 2009 — 90 pages

Abstract: In this report, after pedagogical mathematical insight into basic notions of
numerical analysis for differential equations, more specific Discontinuous Galerkin (DG)
method is introduced. Afterwards, the DG method is combined with a fourth-order stag-
gered Leap-Frog (LF4) scheme to be applied to the solution of the Maxwell equations wave-
propagation problem. Stability analysis of the resulting scheme is performed and some

peculiarities related with the choice of basis functions in the DG method are stressed.

Key-words: High-order time integration schemes, Discontinuous Galerkin method, stag-

gered Leap-Frog scheme, Maxwell equations.

* Dm.V.Ponomarev@gmail.com

Unité de recherche INRIA Sophia Antipolis

2004, route des Lucioles, BP 93, 06902 Sophia Antipolis Cedex (France)

Téléphone : +33 4 92 38 77 77 — Télécopie : +33 4 92 38 77 65

Schémas saute-mouton d’ordre élevé combinée & une
méthode Galerkin discontinue pour la résolution
numérique des équations de Maxwell

Résumé : Dans ce rapport, aprés un apercu pédagogique des notions de base de ’analyse
numérique des équations différentielles, on étudie plus précisément une méthode Galerkin
discontinue combinée & un schéma saute-mouton d’ordre 4 pour la résolution des équations
de Maxwell. On réalise une analyse de stabilité du schéma résultant et on souligne quelques

particularités liées au choix des fonctions de base dans la méthode Galerkin discontinue.

Mots-clés : Schémas d’intégration en temps d’ordre élevé, méthode Galerkin discontinue,

schéma saute-mouton équations de Maxwell.

On high-order Leap-Frog schemes combined with a DG method 3

1 Introduction

This work has been conducted under the framework of first year Master internship and en-
compasses both educational and research aspects of the selected topic in numerical analysis.

In the first part of the present paper, basic definitions and ideas of numerical methods
will be covered by considering and analyzing finite difference methods with few important
examples given.

Next, another numerical technique, so-called Discontinuous Galerkin method, will be
introduced and illustrated on a simple advection equation problem.

This method being very flexible and with help of appropriate finite difference scheme
gives opportunity to gain desired accuracy in solving time-dependent problems.

In the last section, application of the Discontnuous Galerkin method combined with
particular finite difference scheme, staggered Leap-Frog of the fourth order, to an electro-
magnetic wave propagation problem governed by Maxwell’s equations will be given and

stability study will be stressed.

RR n°® 7067

4 D. Ponomarev

2 Approximation of ODEs and PDEs with finite differences

Although the majority of problems are mathematically formulated in PDE form, it is rea-
sonable to start with considering an ODE problem, not just because of its simplicity, but
also due to the fact that it is useful for solving PDEs. For example, application of semi-
discretized methods for solving a PDE yields a set of ODEs: in a time-dependent PDE
problem we do discretization in space at every time step and thus end up with ODEs in
time (this is so-called method of lines). Therefore, it is essential to introduce some basic
concepts and methods for numerical solution of an ODE. Due to the fact that a high-order
ODE is equivalent to the system of the first order ODEs, the most crucial is to consider the

following ODE problem:

=
<

=y = f(t,y), t >0,

Q. ‘

&
—
i
=

(0

<
=

= Yo,

where y(t), f(t,y) can be either functions or vector-functions.
Later on, in all numerical methods we intend to discuss in the current work we will use
the following notations: k stands for the time step, y,, are approximations of the solution at

t, = nk (that is y, = y(t,) for all integer n starting from 0) and f,, = f(tn, Yn)-

INRIA

On high-order Leap-Frog schemes combined with a DG method 5

2.1 Runge-Kutta methods

To introduce such a powerful instrument as Runge-Kutta methods, we start with rewriting

the ODE of (1) in the integral form:

trnt1

Y(tnsr) = y(ta) + / F(ty(t))dt. (2)

One can see that use of the midpoint formula for integration leads to

k k k
Yntl =Yn + kf (tn + 5 Y (tn + 2)) where y (tn + 2) can be evaluated using just Euler

method: y (¢, + 2) =Y, + g fn (which preserves here the second order approximation of
the midpoint formula due to the multiplication of f by k). This particular second-order
method referred as RK2 gave inspiration to formulate the general idea of what is called
Runge-Kutta methods.

All the Runge-Kutta methods are one-step methods (which means that to find value
Yn+1 one needs to know just the value at the previous time step y,), however, within one

time step we have internal stages.

General s-stage Runge-Kutta method reads:

Yi=yn+kY aif(tn+cik,Y;), 1<i<s,

j=1
Yni1 = Yn +k Y bif(tn + cik, V),
=1

where the coefficients a;;, b;, ¢; can be found from some consistency conditions (we refer,
for example, to [3]) which in general become extremely cumbersome with growth of number
of stages s.

If the matrix a;; is lower diagonal, then a Runge-Kutta method is explicit. Order of

accuracy of Runge-Kutta methods is usually less than number of stages s and equal to it

RR n°® 7067

6 D. Ponomarev

just for a couple of methods, one of them is the classical fourth-order method RK4. Since the
computational difficulty imposes restrictions on usage of higher-order Runge-Kutta meth-
ods, the RK4 method, having also good stability characteristics, is the most commonly used

and sometimes is even referred as just the Runge-Kutta method.

2.2 Linear multistep methods

A linear s-step method is generally given in the following form:

S S
> aynir- =k Y Bjfas1-,
=0 i=0

where, by convention, we set ag = 1.

If Bp = 0, then the method is explicit and we can write:

S

Ynt1 = Z (—ajYns1—j + kBjfar1-5) -

j=1

Adams methods are based on using an interpolating polynomial to approximate f(t,y)
in the integral form (2) and easily perform integration. If interpolating polynomial is driven
through the points ¢,,, t,—1, ..., tn—s+1 , the methods are explicit and they form Adams-
Bashforth family. In case we make interpolating polynomial additionally pass through
tnt1, we derive Adams-Moulton family of methods which are obviously implicit (since
the right-hand side involves y,,11).

Another commonly used family of methods, BDF (Backward Differentiation For-
mula methods), also employs polynomial interpolation through the points t,, 41, tn, th—1,

.+ th—s+1 but for approximation of y(¢), not f(¢,y). Once it is approximated, we compute

INRIA

On high-order Leap-Frog schemes combined with a DG method 7

the derivative and plug it directly to the ODE of (1) where in the right-hand side we take
ft,y) = f(tnt1, Yynt1). After that it remains to solve this for y, 1.
However, when one intends to use a linear multistep method, usually a Runge-Kutta

method is still needed to get initial steps in order to start the multistep method.

2.3 Stability, consistency, convergence

To proceed with the notion of stability, we introduce a numerical scheme operator N, such
that mesh function y,(t) corresponding to the exact solution (i.e. yr(t,) = y,) satisfies
equation Ny, (t,) =0 foralln=0,..., N.

Then we can define stability (0-stability) in the following way (see [1]): if there exist

positive constants kg, K such that for any mesh functions =, and z, for k& < kg one has:
2 = 2] < K{Ja = 20| + | max [Nes(t5) = Noza(t))I}

for all 1 < n < N, then the method with operator N, is called O-stable. In other words,
stability ensures that the numerical solution obtained by numerical method corresponding
to N, does not blow up.

One can note that application of a numerical method operator to the exact solution

computed at one of the points t,, gives local truncation error:

Nﬂy(tn) = dn

If we assume:

max|d,| = O(k?),

RR n°® 7067

8 D. Ponomarev

for all problems with sufficiently smooth solutions, then the method is said to have the
order of accuracy p.
In case p > 1, a method is called consistent.

Agsume a method to be consistent of order p and stable, then:
lyn — y(tn)| < Kmax|d,| = O(k),

so the method is convergent of order p. That is to say that consistency and stability

imply convergence.

One of the practical way to study stability of an ODE method is to consider its application

to the test equation:

Y =M. (3)

Obviously, to avoid solution for this equation to be unbounded, one has to have non-

positive real part of A:

ReX < 0.

In a similar way, for a numerical method applied to (3) we define a region of the z-complex
plane (denoting z = k\) where:

‘yn+l| < |yn|7

foralln =0, 1, 2, ..., this region we call the region of absolute stability.
If the region of absolute stability of a method contains the entire left half-plain of z, we
call such method A-stable.

We define the stability function R(z) in a way that:

Yn+1 = R(Z)yna (4)

yn = R(2)"yo. (5)

INRIA

On high-order Leap-Frog schemes combined with a DG method 9

Then the region of absolute stability corresponds to:

[R(z)| < 1. (6)

For some methods (for example, trapezoidal or midpoint), in spite of |R(z)| < 1 for
finite z, we might have ZEIElOJR(Z)‘ = 1 that is not very good characteristic of the method
unless the time step k is very small: because solutions for smaller A (i.e. greater |A| which
are referred as higher modes) are damped less than bigger ones (which are lower modes)
that contradicts to behavior that exact solution of (3) exhibits with respect to change of
parameter A. This leads to the definition of another type of stability: a method is called

L-stable or having stiff decay if its stability function satisfies the following condition:

lim |R(z)| = 0. (7)

| 2|00
Generally, we define stiffness in the following way (although there is no proper unique
definition, here we refer to [1]) - we call an ODE problem stiff if the absolute stability
condition for an explicit Runge-Kutta method impose higher restriction on step size than it
is needed for achieving desired accuracy.
If we have a linear system of ODEs or linear multistep method, then R(z) will be a
matrix and in the conditions (6), (7) instead of modulus we should write spectral radius of

this matrix. This will be demonstrated further on examples (see the next section).
Talking about absolute stability, it makes sense to write down explicitly stability function

for Runge-Kutta methods (due to their high-importance). A general Runge-Kutta method

for the test equation (3) reads:

RR n°® 7067

10 D. Ponomarev

S
Yi=yn+2Y_ a;Y;,
j=1
S

Yn+1 = Yn + szij.

Jj=1

Rewriting this is in matrix form we have:

Y =y, +24Y =Y = (I —zA)"ly,,
Ynt1 = Yn +2bTY = (1 + 267 (I — 24)"1)y,.

Therefore, the stability function for Runge-Kutta methods is given by:

R(z) =1+ 2b"(I — zA)7'1,

where 1 = (1, ..., 1)7 is the vector having dimension s.

Another essential tool to study stability of a numerical scheme is to use Fourier anal-
ysis.

Given an explicit scheme in general form:

y;l+1 = Z bmy;'l+m7 (8)

m=—1

where yi' ~ y(tn, ;) are approximations of solution on an uniform grid with time step
k and step in space h.

We apply this scheme to the constant coefficient PDE problem with periodic boundary
conditions.

Due to periodicity of the problem, the solution can be expanded in the Fourier series:

INRIA

On high-order Leap-Frog schemes combined with a DG method

11

2mijz
y(a,)= Y a;t)e

j=—o0

with the coefficients determined by:

I i
oy = 7 [wle.e Hae

Recalling Parseval’s equality:

ly(z,)., = Z la; ()],

j=—00

we conclude that we can study stability by analyzing behavior in time of the coefficients

a;(t). Therefore, using (8) we compute:

L ..
@ (tny1) = oj(tn + k) = %/0 y(& tn + k) exp (— 27T£‘7€) de.

=) buy(€ + mh,t,)

m=—1

By means of substitution £ = ¢ + mh, the last expression transforms into:

(2mimh
r bmexp

mh

) L+mh - - & B

m=—1

Now we develop the integral:

L+mh L L+mh mh
mh 0 L 0

RR n°® 7067

12 D. Ponomarev

using periodicity of the function under integral sign that results in vanishing of the term in
the square brackets.

Finally, we arrive at:

s . h L ~ - i
o= 55 b (22) 2 [y (255

m=—I

=a;(tn)

Hence we have established a link between all the coefficients a;(t,4+1) and «;(t,):

@j(tns1) = 9(Q)a(tn),

where:

- - 2mh
9(Q) = D bme™ (=T
m=—1
One can see that the so-called amplification factor (or amplification matrix in case
of a linear system of PDEs or a linear multistep in time method) ¢(¢) has the same meaning

as the stability function R(z) introduced above.

In a similar way to (6), for absolute stability we require:

lg(O) < 1. (9)

In case of a linear system of PDEs or a linear multistep time method, we impose the same

condition, known as von Neumann condition, on spectral radius of amplification matrix:

p(9(¢) < 1. (10)

INRIA

On high-order Leap-Frog schemes combined with a DG method 13

However, one should be careful in the situation when p(g(¢)) = 1, namely, if g(¢) has

multiple eigenvalues that might cause instability.

2.4 Stability on examples
2.4.1 Heat equation

We consider the Dirichlet problem for the constant coefficient heat equation:

Yt = QYaz, 1>0,0<2 <L,
y(0,t) =y(L,t) =0, t >0, (11)
y(,0) =y (x), 0<z <L,

and do semi-discretization choosing uniform mesh in space: zg = 0, z1 = h, 9 = 2h, ...,
L

N+1

Thus, with second-order accuracy in space we have:

TnN4+1 = L where h =

i1 295 Ty
(yt)j:aj hgj]+7J:17~'~7Na

Yo =yn+1 =0,
where y; = y,(t) = y(z;,t) (for j =0, ..., N+ 1), that is approximation of the solution in

x; at given time t.

We can rewrite the same in the vector form:

y: = Ay,

Yo =yn+1 =0,

RR n°® 7067

14 D. Ponomarev

where:
-2 1 0 0
1 -2 1 0
Az% 0 (O
0 1 -2 1
0 0o 1 =2

is a symmetric negative definite (as it will be clear later from its spectrum) matrix and

Y= (Y1, Y2y -5 YN—1, yN)T is the vector of the unknowns.

Motivated by the exact solution to the Dirichlet eigenvalue problem:

y' =Xy, 0<z<L,

we can make the following guess for eigenvectors of the matrix A:

lh
L

sin 2mlh
L

Vl(A): =1, ...
(N = 1)wlh
L

in Nrlh
> L

Indeed, by utilizing the well-known trigonometric formulas, we check:

o4 wlh L 2nlh\ o4 wlh 4 9si wlh wlh\
sin T sin <)= sin T sin T cos T)=
. (mlh wlh . (wlh\ . o (7lh
= —2sin <L> (1 — cos <L>) = —4sin <L> sin <2L>’

sin

sin

INRIA

On high-order Leap-Frog schemes combined with a DG method 15

h
L L
= 2sin (jﬂlh> cos <7Tlh> 2sin (jﬂlh> = —4sin (jﬂlh> sin? <7rlh>
B L L) L) L 2L)

sin <(N — 1)7rlh> — 9sin (Nwlh) _sin <(N — 1)7rlh) — 9sin (Nwlh) n
L L L L
+sin ((N i Uﬂh) = —4sin (WL> sin? (ﬂh)
L L 2L

=0

Thus we find out that vl(A) satisfies:
Avl(A) =)\Z(A)Vl(A),

with:

A) 4a . wlh
>\l(hQSIHQ(ﬂ/),Zl,...,N.

Now, we study stability for both the forward (explicit) and the backward (implicit) Euler

schemes for the discretization in time.

For the Forward Euler scheme we have

un+1 _ un
:Aun = un+1 _ BFE n

k.)
where BYF = kA + I and [is the identity matrix.
Note that (BFE)TBFE = BFE (BFE)T (due to the symmetry of the matrix A) and

BFE is a normal matrix. But operator norm of a normal matrix B (with respect to

hence
Lo vector norm) is bounded by its spectral radius. Indeed, because of the fact that a normal

matrix can be reduced to a diagonal D by an orthogonal transformation P (that is to say,

RR n°® 7067

16 D. Ponomarev

B = PTDP), we have:

IB|| = sup ||Bz||= sup |(Bz,Bz)|"? = sup |(PTDPz, PTDPx)|'/? =
llz|[=1 [lz|[=1 [lz|[=1
= sup |(DTz, PPTDPx)|"? = sup |(z, PT DTD Px)'/? =
lefl=1 —~ lzl|=1 Bané

= [Almaz - |(x,\PTIP'$)|1/2 = [Almaz = p(B),
=I
where the supremum is attained at the normalized eigenvector corresponding to an eigenvalue
with the maximal modulus.
Thus, to check stability it rests to find spectrum of the matrix B.

Turning back to our particular case, the eigenvalues of matrix BFF, obviously, are:

)\I(BFE):l—Fk)\l(A):l—%Slnz (7;£l>7l:17’ N’

and its spectral radius is:

FE\ (BFE), dak . , mN N dak

Using analogy with (6) we can say that the scheme is absolute stable if:

p(BTF) < 1.
4dak k1
This condition gives |1 + k‘)\l(A)| <1l =1- % > -1 = 2—2 < 3 Therefore:
2
K (12)
2a

INRIA

On high-order Leap-Frog schemes combined with a DG method 17

Since the absolute stability region is just the interior of the unit disk, the method is not

A-stable, although conditionally stable.

Now we are moving to the Backward Euler scheme:

un+1 —u”
k _ Aun+1 = un+1 _ BBElln,

where BBE = (I — kA)~!.
In order to have boundedness by spectral radius, again we need to ensure that the matrix

BPBE is normal, that is to check that:

(I —kA) NI - kAT = (I — kAT "N (T — KA)L.

First notice that:

_ ATy — 7 _ AT 2 T _ (7 _ 1. AT\(T _
(I —kA)(I —kAT) =T — kA — kAT + K2 AAT = (I — kAT)(I — kA).
=ATA

Then taking inverse of both sides yields the desired result.

Hence it remains to find spectrum and estimate spectral radius of the matrix BEE:

BBE) 1 1

(— — I=1 N
>\l 17]{:)\1(,4) 1+%Sin2 @) g ey 9
h? 2L
1 1
BE\ __ ~
p(B)fH%Si1r12 — ~1+@<1
2 2(N + 1) h?

We can note that since the absolute stability region includes the whole negative (kA1)

half-plane, this method is A-stable.

RR n°® 7067

18 D. Ponomarev

Generalization (in a similar way as we did with absolute stability a few lines before) of
(7) yields imposing condition:

lim p(BPF) =0,

EX(A) — —oc0

if one wants to have L-stability. Evidently, here, higher harmonics are well damped. Thus,

for the Backward Euler scheme we have both A- and L-stability.

Note that here discussing stability we were all the time talking about the absolute sta-
bility whereas there is a weaker definition of stability that just requires solution to have
less than an exponential growth (this corresponds to the well-posedness of the differential
equation problem). However, since the exact solution in our case does not grow in time (due
to the maximum principle that is valid for the heat equation), general stability criterion in

the first order of time-step k coincides with the absolute stability criterion we used.

2.4.2 Wave equation

Since the wave equation is exactly the aim of our study, we develop this subsection in more
details.

Consider 1D wave equation problem with constant velocity c:

Yt = CYpw, 0< <L, t>0,

y(z,0) = d(z), 0<z <L,
(13)

yi(z,0) =9(z), 0<z <L,

y(0,t) = y(L,t) = a(t), t >0.

INRIA

On high-order Leap-Frog schemes combined with a DG method 19

Sometimes it can be more convenient to find an appropriate numerical method if the
wave equation in (26) (which is a second-order PDE) is written as a symmetric system of
two first-order PDEs.

Indeed, a simple substitution:

U = CYs,

(14)
V=Y,
yields an equivalent to the original wave equation system:
Up = CU,
(15)
Vg = Cly.

By means of straightforward differentiating initial and boundary conditions of (13) using

(14) we obtain initial and boundary conditions for the equivalent equations (15):

u(z,0) = c¢'(z),
’U(Z‘,O) = 1/)(90)7

v(0,t) = v(L,t) = d'(t),

(16)

s (0,4) = up (L, 1) = %a"(t).

Here we also utilized equations (15) to get the last couple of conditions (namely, the
boundary conditions on w,), however, the new problem we obtained is overdetermined and
we will see in the demonstration at the end of this section that one of these conditions is
redundant.

Forgetting about boundary conditions for a while, the system (15) can be written in the

matrix form:

RR n°® 7067

20 D. Ponomarev

Ut = U:Cv (]‘7)

where U = (u, v)7.

Performing discretization in space (in a same way for u and v):

uy = Av,
UV = AU,

we have in the matrix form:

where: U = (U1, ..., un, v1, ..., vy) T is extended vector, A is (N x N) dimensional dis-

cretization matrix.

The block matrix Cy having dimension (2N x 2N) can be factorized as follows:

1/vV2 —1/V2 cA 0 1/vV2 1/V2
1/vV2 1/V2 0 —cA —1/v/2 1/V2

Cu =

=P =pPT
where P is an orthogonal matrix of similarity transformation (so PT = P~1),

Performing substitution of Cy; in (18) and multiplying both sides of the equation by PT,

we obtain:

Vt = V, (]‘9)

INRIA

On high-order Leap-Frog schemes combined with a DG method 21

where:

vV = PTU. (20)

After discretization in time we arrive at:
Vvl = By VT, (21)

In general, stability of the original problem (18) may not follow from stability of the
block diagonalized problem (19) or the fully discretized problem (21). However, if matrix
Cy is normal it can be reduced to block diagonal form by an orthogonal transformation P,

and here it is exactly the case, hence we have:

1@ < 1Pl - IPTI|IIT)],
T

provided that all eigenvalues of matrix Cy have non-positive real part, that is, max(Re)) <
0. That means that stability of (19) implies stability of the original problem (18).

Moreover, in our situation, since we are lucky to have the matrix Cy in very special
form, the similarity transformation matrix P is not dependent on h and thereby (due to
(20)) stability conditions for U and V even for the fully discretized problem are equivalent.
Here, as in the case of the heat equation problem considered above, talking about stability
we all the time imply absolute stability, this is due to the fact that exact solution of the
wave equation problem in the bounded domain is not growing in time.
Finally, we come to particular schemes and we start with the scheme named Forward Time
Centered Space (FTCS) which approximates (17) in the following way:

+1 n n n
urt-ur [0 ¢ |Ur, U7,

2h

RR n°® 7067

22 D. Ponomarev

Without loss of generality, let us first focus on the space discretization operator A (and
therefore we omit writing indices for time steps for a while) applied to u (the procedure with
v goes absolutely the same way) and find its spectrum.

In order to estimate it, we impose particular boundary conditions uy = 1, uy1 = 1 that

are completely artificial but serve our purpose’. Then:

SRy, j=2,...,2N - 1,

2h
UQ—l
= A
oh e
1 —usn—

This formulation can be written in the matrix form:

0 1 0 0 0 O Uy -1 U1
-1 0 1 0 0 O Us 0 Us
0 0 O

1 1 —

oh 0 0 -1 0 1 0 O U + o 0 = Uj
0 0 0
0 0 0 .o —1 0 1 UN-1 0 UN-—-1
0 0 o ... 0 -1 0 UN 1 UN

Like in the case of heat equation, here again, keeping in mind the solution for the

continuous analogue of the problem:

! Though, generally discretization of boundary conditions may turn a stable scheme into unstable one,
but here, as it will be clear after the calculations, the scheme happens to be unconditionally unstable, and
to show instability it is enough to show that the scheme is unstable just for some specific choice of boundary
conditions.

INRIA

On high-order Leap-Frog schemes combined with a DG method 23

v =M, 0<z<L,

We search the eigenvectors in the form:

o 2milh
Xp 7
o 4milh
XPp 7
2mijlh
ul(A): exp(mg) ,i=1,...., N.
2(N — D)milh
P\

o 2Nmilh
Xp 7
Plugging this into the matrix form above and using the Euler’s formulas for simplifying:
4milh e (O) _ 9isin 2mlh . 2milh
p 7 exp (i0) = 2isin | —— | exp)
2mi(j + DIk 2mij — DIk _ . (27lh omijlh
exp T = 2isin | —— | exp 7 ,
3 milh 2(N + 1)milh\ 9 sin 2rclh N 2Nilh
exp L + exp ——) =2isin{ —— Jexp T ,

=cos(27l)=1
we conclude that u{*) are truly the eigenvectors that correspond to the eigenvalues

l
(A)) . 2nlh
>\l hsm(L s 1:17,N

Then for the block diagonalized matrix Cy (that has the same eigenvalues as Cy) we

obtain:

; olh
ﬁ“”:ifgn<z;>,l:L.”Jm

RR n°® 7067

24 D. Ponomarev

and it means that we have 2N eigenvalues in total, but only N of them are distinct (that is
to say, each eigenvalue is of multiplicity 2).

Let us proceed with discretization in time:

{[n—i—l _ {/‘n _ _ _
- = v = = 1% .
Cv V" Vn+1 (kC + I)Vn
k %/_/
=By

It follows that:
ABV) — ACV) 4 q

3

L2c2
PwWZ\F#;+1>L

Hence we conclude that FTCS method is unconditionally unstable (no matter what time

and:

and space steps we take).

Now, after the breakdown of the previous scheme, we try to apply another method, the
so-called Leap-Frog (LF2) scheme, which gives the second order approximation of the

solution in both space and time:

g 2y Sy = 20

2 h2 (22)

Unlike for the previous scheme we will check stability in a different way demonstrating
an alternative approach.

Since we have periodic boundary conditions, we can use Fourier analysis discussed in
the previous section, that is, we find amplification matrix and impose the condition on its
spectral radius. Alternatively, since the original problem allows separation of variables and

for spatial part Fourier analysis can be applied, we can search for a discrete solution in the

INRIA

On high-order Leap-Frog schemes combined with a DG method 25

form:

y;% _ Gneifaﬁj — Gneiéjh _ CYvnez'j(7

where we denote ¢ = &h.
In order to have the absolute stability, G (which is usually referred as the growth factor)

must satisfy condition:

|G| < 1.

Plugging this into the scheme (22), we obtain the equation for G:

(Gn+1 —_2G" + Gn—l) eij(_ %Gnei;jf (eiC —924 e—iC) =
h2

2c2k?
= G272G+1:G’Chi2(cos§fl) =

2¢2 k2

= 02—2(1—h23m2(§/2)>G+1=0

Hence we have two roots - solutions for the growth factor:

G172:Oz:|:\/a271,

2,2
where we denote o = 1 — (;172 sin?(£/2).

First, it is easy to see that if |a| > 1, then for at least one of the root |G| > 1, which

leads to instability.

Now, assume |a| < 1. Obviously, we have 2 complex conjugated roots and thus:

Gial=a?+(1—-a)* <1.

This is fulfilled automatically due to our assumption |a| < 1. It means a > —1 (since,

evidently, a < 1) which results in the well-known Courant-Friedrichs-Lewy (CFL) con-

RR n°® 7067

26 D. Ponomarev

dition:

k<

ol

. (23)

We should stress that this condition imposes much less limitation (the restriction is just
linear in h) on a time step than the one for the heat equation problem (12) (where the

restriction on a time step was quadratic in h) and thereby makes way for an explicit scheme.

Now we want to apply the LF2 scheme to discretize (15) instead of tackling original wave
equation.

In order to do that, let us consider the following numerical scheme:

n+l _ n-—1 n _an
Y Yi o _ Y T Vi
-)
,Un+1 2_]{7/1)”71 un 2_I/Lun (24)
j i M T
2k 2h

One can easily see that in this scheme, values (in both time and space) on one hand
side are computed in between of the points used on the other and vice versa, therefore the
symmetry guarantees the second order of accuracy in time and space. However, as we are
going to show now, more natural way to preserve the symmetry (even within a single step)
is using so-called staggered grid as it follows. Assume we prescribe values of u in time points
in usual way but for space points we define its values on a dual grid that we denote with
half-integer indices; for v everything is the other way round - we use regular mesh in space
and half-integer time steps.

This staggered grid is illustrated on Fig. 1.

The numerical scheme on this mesh reads:

INRIA

On high-order Leap-Frog schemes combined with a DG method 27

T
”%/2 ”3/2 ug/Q
Uf/Q U;/Q
“i/z u%/2 “é/Q
W2 b2
”?/2 ”2/2 ug/Q
-z
Fig. 1. Staggered grid pattern
n+l _ n n+1/2 n+1/2
Uitz T Y12 Vi1 T Y
k h ’ (25)
n+3/2 n+1/2 un-{—l o un—i—l
Yitr "Y1 TiH3/2 Ti41/2
k h '

This is a particular case (for full discretization in space and time) of the scheme usually
referred as StaggeredLF2.

If we substitute here midpoint approximation of (14):

_ y;—&-l Yj
U;J+1/2 = C s

1 n

n+1/2 _ Yj Yj
J - k ’

the first equation in (25) turns out to be trivially satisfied and the second gives:

U2 G 20 gt

k2 h? ’

which is exactly (after re-indexing in time (n 4+ 1) — n) the LF2 scheme introduced above

for the original wave equation. Thus, the equivalence of (22) and (25) is now shown.

RR n°® 7067

28 D. Ponomarev

Demonstration of the StaggeredLF2 scheme
Let us illustrate stable and unstable behaviors of the StaggeredLF2 scheme on a particular

example of the wave equation problem:

Ypt = CYgw, 0<ax <L, t>0,
y(@,0)=sin (), 0z <L,

yt(zvo) :07 OSQZSL,

y(0,t) = y(L,t) =0, ¢t >0.

The problem obviously has the analytical solution:

o) = & (s (FEEDY g (=) i

As it was described before, introducing new variables (14), we can transform the wave
equation problem (13) into a system of first order PDEs (15) with the corresponding initial

and boundary conditions (16). Applying this to our particular case (26), we arrive at:

Uy = cvy,
Ut = Cly,
e X
u(z,0) = — cos (—))
L L (28)
v(z,0) =0,

v(0,t) = v(L,t) =0,

uz(0,t) = uz(L,t) = 0.

Exact solution of (28) follows directly from (27) and (14), and it is given by:

INRIA

On high-order Leap-Frog schemes combined with a DG method 29

u(z,t) = % (cos (W) + cos (ﬂgjL_Ct))) , o
o ())

Now we move to numerical solution of (28). The StaggeredLF2 scheme (25) gives:

ke
+1 n+1/2 n+1/2 .
Ui = Ui+ 5 (vj-H — v) , Jj=0,..., N,
n=20,..., M,
+3/2 _ nt1/2 | ke +1 +1) _
vitn =l (“;‘:Ls/z - “?+1/2) = (30)
kc
+1/2
= U;+1/ T (“?+3/2 —Ujyiat
ke ¢ ny1/2 +1/2 +1/2 .
+W(U;L+2/ —21);1“/ —I—U;L /) , 7=0,...,N—1,
n=20,..., M.
The second expression is more convenient to write replacing (j + 1) — j, namely:
n+3/2 _ n+1/2 kc n n
vio =Y (Wye T Wyt
ke [ny12 +1/2 +1/2 .
+ﬁ(v;‘+l/ — 2y +v;11/) . j=1,....N, (31)
n=20,...,
The initial and boundary conditions read:
me T ,
u?+1/2 = fcos(321/2), 7=0,..., N+1,
v =0, j=0,...,N+1,
w2 =0, n=0,..,M+1, (32)
1]?:_11/220, n=0,..., M+1,
U?V+3/2:u%+1/2, n = ,...,M-‘—l,

RR n°® 7067

30 D. Ponomarev

where the last expression is a consequence of the second order approximation of u, at the
boundary of the staggered grid.

We cannot impose a similar condition on the other boundary, since we do not have
value u” /2 in order to discretize it symmetrically (and therefore preserve the second order
accuracy), however this condition is not needed (we have already mentioned redundancy of
boundary conditions when were formulating (16)), because the first formula in (30), that is

valid for j = 0, can be utilized:

n n ke +1/2 +1/2 n kc nt1/2
U1/+21:U1/2+f v T2 gt :u1/2+ﬁ”? 2, (33)

=0
and thereby this value at the boundary is transmitted step by step from the initial one at
t=0.
The formulas above (30), (31), (32), (33) allow us to perform calculation at all space and
time points.
+1/2

Once all values of u? 112 and 11? are computed, we can get back to solution of the
original wave equation problem (26) simply by integrating one of the expressions (14) using

midpoint rule (to preserve the second order accuracy):

1 [hi=
i =yl t) =u0ta) + 1 [u(€)= U+ Y s
0 1=0

(j=0,...,N+1, n=0,....,M+1),

or:

tn n
yi = y(zj,tn) = y(x,0) + / v(xj,0)dd = y;) + kzv;ﬂ/z
0 1=0 (35)

(j=0,....,N+1, n=0,...,M+1).

Each of these two formulas has its own advantages and drawbacks. The first of them

(34) does not require storage of the solution at all previous times, hence we can benefit

INRIA

On high-order Leap-Frog schemes combined with a DG method 31

from StaggeredLF2 being an explicit method, whereas the second one (35) employing time
integration gives better accuracy since usually (due to stability condition) we have more

temporal points than spatial.

On Fig. 2 we show a comparison of the numerical solutions with the exact ones at
different time stations for the following values of numerical parameters: length of physical
(spatial) domain L = 10, velocity ¢ = 1.5, total time of integration 7" = 10, number of space

intervals N + 1 = 50, number of time intervals M + 1 = 100.

The same is shown on Fig. 3 but with the number of time intervals M + 1 = 50 yielding

violation of the CFL condition (23) that results in the instability in time illustrated below.

RR n°® 7067

32

D. Ponomarev

Solution of the wave equation at t=0.1

Fig. 2: Numerical solution for the wave equation

Solution of the wave equation at t=1

Solution of the war

we equation at t=5

T T
Exact solution
—-— - StaggeredLF2

with the CFL condition held

INRIA

On high-order Leap-Frog schemes

combined with a DG method

33

Solution of the wave equation at t=0.1

Solution of the wave equation at t=4

A

R
FIRTA

I

Fig. 3: Numerical solution for the wave

RR n°® 7067

Solution of the wave equation at t=3

-260

equation with the

CFL condition violated

34 D. Ponomarev

3 Discontinuous Galerkin method

Besides the finite differences method, there are other numerical methods that are widely used
for discretization in space, such as the finite volume method and the finite element method.
The latter is mainly used in elliptic and parabolic problems (i.e. for problems without
particular space directions dictating by equation and thereby allowing use of symmetric basis
functions to expand solution). The finite volume method is similar to the finite differences
method, but based on integral form of equations and therefore being perfectly suitable for
problems with discontinuities, is designed for hyperbolic problems but generally having as
disadvantage inability to give high-order approximation on unstructured grid.

Therefore we would like to find a wise mixture of the two methods mentioned and this
leads us to the so-called Discontinuous Galerkin (DG) method.

We intend to introduce the DG method by considering homogeneous one-dimensional
advection equation:

Ou n Of (u)

ot ox

=0, (36)

with linear flux f(u) = cu.
We look for a solution to this equation on an spatial interval Q = [0, L] performing parti-
K
tioning of the whole interval into non-overlapping elements 2 = kule as well as discretiza-

; i k_ 1.k .k 1_ E_ k=1 _k _ _k+l
tion within an each element D" = [x7, mNp]. Note that 27 =0, 27 = Ty TN, =T,

xﬁp = L where number of elements is K and number of grid points within one element is

N, and size of an element is h* = :E?Vp — k.

Ilustration of this partitioning is given on Fig. 4.
In the DG method we follow the idea of the finite element method, but we search for local

not global as in the case of FEM) approximation of solution wy (x,t) in D as an expansion
(not g pp : p

on some basis of functions {wﬁ(z)}gil that we assume here to be chosen from the space

INRIA

On high-order Leap-Frog schemes combined with a DG method

35
1 k—1 k k+1 K
D, D 2 D D,
—— N N —— o —,
S S t t t t t
z} zy, it ah = 2, =t xk;l zf 3,
Fig. 4: Domain partitioning for the DG method
C>=(D*):
NP
up(@,t) = iy () (). (37)
n=1

Then the global solution can be approximated as:

K

u(z,t) = up(z,t) = k@luﬁ(x,t).
Since we replace original infinite dimensional space with finite dimensional approximation
space that is spanned by {4} (x)}, ", the local approximation of solution uf(z,t) does not

exactly satisfy the original equation (36), and this yields notion of the local residual:

ouF Of(uf
112’,3(1:,75):8—;4r f(,gmh). (38)

We want this local residual to be orthogonal to a test function from the space that,
according to the Galerkin approach, we choose to be the same as the approximation space

defined above. Due to independency of basis functions, it results in orthogonality of the
residual (38) to all the functions {wﬁ(x)}Np :

n=1"

/ RY ()8 () = 0,
DFk

RR n°® 7067

36 D. Ponomarev

forn=1,..., Np.
After plugging (38) into (39) we can perform integration by parts (since, as we assumed,

our basis functions {y% (x)}ivil are smooth on D¥):

ouk ok @
/Dk ((’)thwz - cuﬁé@) de = — [cuﬁwﬁ] x,fp. (40)

If we considered just an isolated element D*, (40) would give us N, equations allowing
to determine the expansion coefficients @ (t) (for n = 1, ..., N, and fixed k) of the local
solution (43). However, due to locality of definition of our approximation space, we have
discontinuities of the solution uy,(x,t) at every interface between elements, and it gives rise
to a question regarding which value of u} to take at each element boundary. Therefore, in
general we can simply rewrite (43):

k k K

[(Gt b do =~] 17, (41)
introducing the "numerical flux” f* = (cu)” = cu} as a smart combination of flux values
on the common boundary of every adjacent elements to approximate the real flux f = cu
through this boundary. For instance, on the right boundary of D* the numerical flux is
some function of u’,i(:c’fvp) and uy T (2 f*|mlfvp = f*(uf, u}™) that must be chosen in
a way not to cause instability of the whole method (study of stability will be considered
few paragraphs later) and obviously be consistent (that is to satisfy f*(uf, uf) = cu¥ and
f*(uﬁ"'l, uZ"H) = cuZ'H).

Once the numerical flux is chosen, we can use (41), that is referred as weak formulation,

to obtain all the expansion coefficients @% (¢) for all elements and thereby recover globally

approximated solution wup,(z,t).

INRIA

37

On high-order Leap-Frog schemes combined with a DG method

Having introduced the numerical flux, we can perform integration by parts again and

hence transform (41) back to the original form
(42)

| Rt owhia)dn = (e - 57) 0] 137

which is called strong formulation and it gives a way to pose the problem with basis functions

that are non-smooth or even discontinuous inside an element
The question that still remains is how exactly to choose the numerical flux. Since the

crucial property of a numerical method is stability, we will be looking for the simplest, linear

numerical flux in a way for the method to be stable
We are going to use the energy method for stability analysis. In order to do that, it is

convenient to choose the Lagrange polynomials as basis functions (that is so-called nodal

approach). Then for local solution approximation in an element D* we have

NP
Zu zj,t) (43)
Jj=1

Np k

where IF(z H J is the Lagrange interpolation polynomial.
iy —a¥
=
The strong formulation (44) reads:
/ Duy + Of (uy) 1 (x)dx = [(cuy — f*) 1 (2)] v, (44)
pr \ Ot ox i h : af 7

fori=1,..., Np.

Plugging (43) into the left-hand side of (44), we arrive at

N,
duk - di(x
Wl [@@+ Y e aior) [5 e = [(euly — 1) 1G] [
=1 Dk =1 Dk dx 1
| S ——
_S:cj

=Nk
=M}

Mﬁz

RR n°® 7067

38 D. Ponomarev

This can be written in the vector form:

d R
Mkaui‘l + S*(cuf) = [(cuﬁ — ") lk} m?”, (45)
T
where uf = (uf(21,t), ..., uﬁ(xNP,t))T, 1k = (l’f(x), cee l?vp (m)) and M*, S* introduced

above are local mass and stiffness matrices, respectively.
Multiplying (45) by (ui‘l)T, we have the following:

- the first term yields:

S Jr dul (z;,t)
k h\Lis k k _
;uh(%t);ﬁ/jy ¥ ()% (2)de =
Np Ny k
duf (z;,t) 1d 2
_ k . k h*¥ k _ - k
-/ L hlen 0t) S e = 5 [
=i () i, (x, 1)

ot

- in a similar fashion, the second term gives:

o k o k dij (z) k
(2t () [Bk) —
ORI) [i
N N,
s - di¥(z) c ok,
:c/Dk;uﬁ(xj,t)lf(x);uﬁ(x“t) I dx:§(uﬁ)2|w?
—df(e) Ouk(x,1)
T Oz

Developing the right hand side term we take advantage of choosing Lagrange polynomials

basis by utilizing the fact that I¥(z;) = &;; (J;; is the Kronecker symbol):

k

()" [(eok =) P[5 = ()" [(e = 1) (B0, 0085, 00) | 7 =

INRIA

On high-order Leap-Frog schemes combined with a DG method 39

Finally, we put everything together and obtain:

d Ik Ik Ik
= bl =2 [(euf = £) ub] [= eh)?07 = [euf)? 2/ uf] 7. (46)

For stability one wants to have:

d K g 5
2
sl = > 2 (k] <0, (47)

k=1

providing the appropriate solution is not growing in time, that is to say:

d

5 ullg, = —c (u*(L, 1) —u?(0,1)) <0, (48)

which follows from the integration by parts of the original equation (36) multiplied by u(zx, t).

Summing up (46) over all elements, we end up with the same difference of values at
the boundaries of the domain Q as in (48) simply by choosing the appropriate value of the
numerical flux at the exterior plus contribution of jumps at every interface between elements
related with solution discontinuities there. Since we want that the total contribution of those
jumps do not make expression (47) positive, it is enough to impose condition of non-positive

contribution of a jump at each interface:

c ((uh(xf,t))2 — (uh(aﬁ,t))Q) —2f* (uh(xf, t) — uh(er,t)) <0,

that is:

(u™ —ut) (c(u” +ut) —2f%) <0, (49)
where for the sake of brevity we use notation z~ = xﬂ“\,p, zt = 2wt = (2t),
u~ = up(z~,t), implying validity of this condition at all interfaces, i.e. fork =1, ..., N,—1.

RR n°® 7067

40 D. Ponomarev

As we agreed we consider linear numerical flux as the simplest form, therefore we look
for the appropriate numerical flux as a general linear combination of uy(z") and wuy (™)

that is the most convenient to write in the form:
;=5 (Bl =)+ Balu +ut)).
Inserting this into the left-hand side of (49), we come to:
clu” —ut) [(u” +ut) = Bi(u” —uT) = Ba(u” +ut)] <0.

To ensure negativeness of this expression regardless particular values of v and u™, we
C .1
want to have [...] = —f u(u‘ —uT) providing 3 is an arbitrary non-negative constant. This
c

restriction leads us straightly to:

ﬁl = ﬁH7
C
/82:17

and therefore the general linear numerical flux is:

]

fr= Gt 4un) + B —ut), B0,

Notice that in case S = 0 we have the central numerical flux (and this corresponds to

zero contribution from all internal boundaries):

= g(w +u), (50)

whereas setting 0 = 1 leads to the purely upwind numerical flux:

INRIA

On high-order Leap-Frog schemes combined with a DG method 41

fr= (51)

Therefore we can expect consistency of the method for all "intermediate” choice of the
numerical flux, that is for:

=St) 4w), 0<p< (52)
However, in our study we will focus just on the central (50) and the purely upwind (51)
numerical fluxes.
Having chosen the basis functions for approximation space and the numerical flux, one

can get back to (41) or (42) and eventually form the space discretization matrix.

Before we proceed with considering particular problem tackled by the DG method, error
estimate needs to be briefly mentioned.

Obviously, increasing number of elements K (that is, refining grid, reducing the size of
an element h = L/K) and number of points N, (which results in increasing interpolation
order being N, — 1) should cause accuracy gain of the method. Namely, according to [4], in

general one has:

u—upg < CHN>=1/2, (53)

However, this estimates just spatial error and "constant” C, in fact, is time-dependent

(that results in at least linear error growth in time).

RR n°® 7067

42 D. Ponomarev

Demonstration of the Discontinuous Galerkin method
Let us show how the DG method works on practice applying it to a simple "toy problem”

(providing ¢ > 0):
ou , ou
ot Oz

u(x,0) = sinz,

=0, O<z<L, t>0,

u(0,t) = —sin(ct) = a(t),

which has the following exact solution:

u(z,t) = sin(z — ct).

As it was discussed, we are looking for the approximate solution on each element DF =

[:r’f,;vN] (k=1, ..., K) in the form:

Plugging this into the weak formulation (41) gives:

U

1

dit’(il Bz . s
20 [k W= i) [W) b (w)ir = e () @7 (54)

P
.:1

— fx

= =(s5)"

Here, in contrast with nodal approach that we illustrated during study of stability, we will
use modal polynomial approach. And natural way to do it seems to be choosing the set of
functions {x"} 5 as basis. However, since to go on with solving problem after applying the
DG method, time derivatives need to be explicitly expressed from (54) that requires inverting

mass matrices. At this point one can notice the fact that fxiacjdx ~ - which may

1
i+5—1

INRIA

On high-order Leap-Frog schemes combined with a DG method 43

1
result in ill-conditioning (since for high-order interpolation the multiplier P is close
i+ —

to zero) of mass matrices and therefore further loss of accuracy.
One way to proceed is to make inverting mass matrices M* as simple as possible, and
in order to do that, we choose the orthonormal Legendre polynomials {Pn,l}nNil on [—1, 1]

as basis functions and do one-to-one mapping;:

i@y =P, ("), n=1,..., N, (55)
1
[xlfa x?\fp] - [_17 1] : Tk(x) = ﬁ(zx - m]16 - x?\/p)a (56)

where the orthonormal Legendre polynomials can be explicitly computed using Rodrigues’

formula:

1 [nttidr ., ..
Po(r) = Tm\ — g D

or recurrent formula that they obey

TPn(T) = anPnfl(r) + an+1Pn+1(7")7

Vien+1)(@2n-1)

1
Then, performing the change of variables x = §(x’f + x’f\,p) + ghk in integrals of (54), we

1 3
starting with Py(r) = 7 Pi(r) = \/gr and the notation a,, =

have:

I?\'T,J hE 1 hE
M= [t = [P = o,

zk k 1
o [T (@) _/ AP
Si; = ~/;E’f Wy (x) e dx = » Pi_q(r) e dr = Si;.

RR n°® 7067

44 D. Ponomarev

Note that for uniform partitioning (i.e. k¥ = h) mass matrices are simply assembled into
the identity matrix multiplied by h and stiffness matrices are independent of an element

number k.

Taking this into account, (54) transforms as follows:

k ak Np xljv
%d :it(t) - ;Cﬁé(t) (Si))" = [~ vk ()] e (57)

The numerical flux on the left boundary of the domain is chosen to be equal f*[,1 = ca(?)
(purely upwind, due to the boundary condition) and on the right boundary flux is purely
outflow f*‘mf\(,p = cujy (z},) (no boundary conditions can be imposed).

Between the elements we, first, choose purely central numerical fluxes.

This gives (where we still will use ¥ notation for a while instead of P):

Np

da (t N
Crug SN AENEERE DI
b Pk W) 0)] + Sealt)el),
i) _ gt [(—285i + wh(ak, wh(ah,) — whhvbah) abe) +
dt hk i Je [N, /%3 N, [1% 1 g
S G o G e (OB T G L GO U) I 9 g
AK NP
WS (<28 + 20 W (0, — e) i) -
j=1

R AR LA O F

INRIA

On high-order Leap-Frog schemes combined with a DG method 45

K2

Taking into account that due to (55)-(56) we have ¢f(z}) = Pi—1(—1) and ¢} (2) =

P;_1(1), we end up with:

dﬁ;t(t) _ _};;[(—2Sﬁ+Pi1(1)Pj1(1))@}(75) +

+ Plfl(l)ijl(—l)ﬁ?(t)] + %a(t)Pifl(_l)ﬂ

ik (t) ¢ & N
i _ﬁz (=28 + Pia(D)P_1(1) = Pioa (=) Pja(—1)) a5 (1) +

1

+ PP (D) () = B (D) P (Dai (1), 2<k <K -1,

NP
= o 2 (=285 + 2P ()P (1) = Pa(CDPa (CD) ()~
j=1

- Pi(-1)P(D)af ()]

Now, after mapping to linear index structure (k,i) — (k — 1)N, + i, space discretization

matrix A can be assembled and the formulas above can be written in the vector form:

S cana(t) + £(b),

where dimension of the vectors G(¢) and f(¢) is KN, (though f(¢) have only first N, com-
ponents not equal to zero that is result of the boundary condition) and the matrix A has
the sparsity pattern given on Fig. 5 (for K = 20, N, = 2).

Now, we consider purely upwind numerical fluxes at all internal boundaries between

elements.

RR n°® 7067

46 D. Ponomarev

e
e

e _Bun

EE R
5 - S B

8
e RAE
L]
e hEw
10 e S B
e BEn
e an
e hae
sau we
15 e B B
s e
-
e
Iy
20 B B
L
-
s
S
25 e B
an an
. _Bus
En R
R
30 RS B 4
e RAE
L]
e hEw
e we
35 - S
e an

e hae
wau we
L et
L) N ...

=
i
o
m
5]
=
o]
4]
(1)
]
o]
(3]
.
=1

Fig. 5: Discretization matrix sparsity pattern for the DG method using central numerical
fluxes

This yields:

da (t
dt

~
[N}
o

dik 2 - ,
B = 205 [(~s+ vk, ak,)) ab) — vl ehas o).
j=1
2<k<K-—1,
dal<(t) 2 K K\ KK\ K K/ K\ K—1/ K\sK—1
BT D [(—sz'Jr?/Ji (zN,)Y (pr)) i (&) = Wi’ (21)y~ (21)3; (t)} :
iz

INRIA

On high-order Leap-Frog schemes combined with a DG method 47

The same can be written in terms of the normalized Legendre polynomials:

dit(t) 2 & 2
0 - Tm 2 (=S4 + P (L) Pj—1 (1)) 45(¢) + ﬁa(f)Pi—l(—1)7
dik(t) 2 & " -
T [(=Sji + Pica (1) Pj1 (1)) a5 (1) = Pia (1) Pja(Dag (1))
2< k<K -1,
dak(t) 2% K SK—1
0 = K 2 [(=Sji + Pica (1) Pj—1 (1) 5 (t) = Pica (1) Pj—a ()i ()]

In the vector form:

where the space discretization matrix has the sparsity pattern given on Fig. 6 (for K =
20, N, = 2).

Now it rests to do integration in time. Since the point of this demonstration is to
illustrate application of the DG method, but not gaining high accuracy in time, to avoid
possible stability issues we simply use the Backward Euler scheme for time integration. In

both cases, for purely central and purely upwind fluxes, this gives:

art! — g 1
— — =cAu"tl ! = W't = (I — keA)” Q" + kBf" 1,
k | —
=B
2
where f"*1 = h—fa(tnﬂ) (Po(=1), ..., Pn,—1(=1), 0,0, ..., O)T and the starting state 0°

is determining from the expansion of the initial condition inside each element. And vice

RR n°® 7067

48 D. Ponomarev

I
-
shun
un
& b 4
Py
aun
aun
-
10 e B
e
e
wan
Pyt
15 - B
1
s
i+ 7
20 e B
e
hae
-
sanse
25 RS B
sans
shun
ites
30 RS E
aun
aun
4444
35 Ty B
e
aun
Pyt
-
40 Mkl

Fig. 6: Discretization matrix sparsity pattern for the DG method using upwind numerical
fluxes

versa, once expansion coefficient vector found at desired time, the solution immediately fol-

lows by expansion with these coefficients inside each element.

On Fig. 7 and 8 the results are given for the both types of numerical fluxes considered
and different interpolation order and number of elements. The following constant parame-

ters were used: length of physical (spatial) domain L = 10, velocity ¢ = 0.05.

As one can notice, for higher interpolation order (N, = 4) there is no visible difference
between use of purely upwind or purely central numerical fluxes (however, as we will see in
the next section, a choice of the numerical flux may strongly affect stability condition). For
linear interpolation (N, = 2) this difference becomes more and more obvious with growth
of time as error increases, nevertheless, this is good from instructive point of view to reveal

and illustrate the discontinuous nature of the method.

INRIA

On high-order Leap-Frog schemes combined with a DG method 49

Solution at T=5 with central nurm. fluxes

oafe-

Solution at T=5 with upwind num. fluxes

LN

gk

. Computed OB i Computed
Analytical | Analytical |
i i

Solution at T=10 with central num. fluxes Solution at T=10 with upwind num. fluxes

111 URTPOR ORI SO

ogl

08k i, P A St

i1z SUSTUEY VU PUPUY [11=] SUTRT WY
0.4 04
02 02
oz Db b A
o4l DAl

S R S

- Computed H EIR:] SRS ‘ Computed H
Analytical | Analytical |
1 1

R !
g 9 10 0 1 2 3 4 5 B 7 g 9 10

Fig. 7. Solution of advection equation using the DG method with central numerical fluxes.
Number of elements: K = 10, points inside an element: N, =4

RR n°® 7067

50

D. Ponomarev

Solution at T=5 with central nurm. fluxes

Computed
Analytical |
i

Saolution at T=10 with central num. fluxes

04

02

O S SO PUPYS FO0S F0F PSP PRI SO

L U SO SUNUORUUUPON SUOTUPU SUPRTION

i Computed H
Analytical |
1

g 9 10

Solution at T=5 with upwind num. fluxes

ok AN

Computed
Analytical |
i

04

0z

DZbfo bt

[U SRRV SUNUORUUUUON BUOTUOU ORI

< Computed H
Analytical |
1

!
2 3 4 5 B 7 g 9 10

Fig. 8: Solution of advection equation using the DG method with central numerical fluxes.
Number of elements: K = 20, points inside an element: N, = 2

INRIA

On high-order Leap-Frog schemes combined with a DG method 51

4 Application to the equations of electromagnetics

Since the aim of this work is the numerical solution of electromagnetic wave propagation
problem, we start by introducing Maxwell’s equations.

The famous Maxwell’s set of equations (written in Electrostatic CGS units system in
order to have symmetry between electrical and magnetic fields which in this system have

the same dimension) reads:

V-E = 47p,

V.-B=0,

10B
E—__-22
VX c Ot’

47 10E
B=—J+-——
VX c +03t’

(58)

where E, B are electrical and magnetic fields correspondingly, J is vector of current density,
c is the speed of light, p is the charge density.

This incorporates Gauss’ laws for electrical (more precisely, Gauss-Coulomb law) and
magnetic fields (the first two equations), Faraday’s law of induction and Ampere’s circuital
law with Maxwell’s correction (namely, displacement current, the last term in the right hand
side of the fourth equation).

Here we also assume that dielectric permeability and magnetic susceptibility are both
equal to unity ¢ = p = 1 (that is, no polarization and magnetization effects occur), and
moreover we will focus on the electromagnetic wave propagation problems in free space,

therefore we have:

RR n°® 7067

52 D. Ponomarev

For the sake of simplicity we consider just the one dimensional case.

Let us set:

E = (0,0, E.(x,t)) = (0, 0, E(z,1)),

B = (0, By(x,t), 0) = (0, B(x,t), 0).

Then:

OE
— 0 9 9 = -
VxE= det| 2 2 0 |=-"te,
0 0 E

0B
— o o B -
VxB= det 5% By s —amez
0 B O

So the last two equations in (58) governing dynamics (the first two are satisfied auto-

matically) take the scalar form:

OF OB
9E _ 9B
ot oz’
o _ ok)
ot~ oz

that (after substitution v = B, v = —F) corresponds exactly to (15), the example consid-

ered before. However, here we focus on use of high-order methods.

First, performing space discretization and denoting in general the corresponding dis-
cretization operators as Ag, Ap (that particularly might come from DG method and which

may not be the same for E and B due to the different boundary conditions), we arrive at:

INRIA

On high-order Leap-Frog schemes combined with a DG method 53

dEZCABB,
j}g (60)
— =cAgE
dt cApk,

where we write E, B as vectors implying the vectors with the spatial values as the compo-

nents.

As we showed in the example in the first part (in particular case of the full discretization
in space and time), for the wave equation the Leap-Frog method can be effectively applied
on a staggered grid. Let us consider this in details.

According to the previous publications ([2, 7]), general staggered Leap-Frog methods for
time integration of the second and the fourth order of accuracy are further introduced.

Consider a system of ODEs:

v = g(t,u).

StaggeredLF2 reads:
u Tl ="+ Ef(tns)2, "ty
V"2 = Y2 4 kg (b, uTY).
StaggeredLF4 is given by:

"t =" §a1 + iOég + i015
24 24 24

22 1 1
n+3/2 _ , nt1/2
v v +24ﬁ1+2453+2455,

RR n°® 7067

54 D. Ponomarev

where:
a1 = kf(tny1/2, v,
ag = kg(tn,u"),
a3 = kf(tn,1/27v”+1/2 —),
oy = kg(tna1,u” + ay),
as = kf(tniz/o, 0"+ ay),
and:

B = kg(tni1, u™*h),

B2 = kf(tni1/2, Un+1/2)a

B3 = kg(tn, u" ™ = B2),
Ba=kf(tnysse, "2 4B,

Bs = kg(tns2,u" " + Ba).

The StaggeredLF2 rule for our generally discretized in space problem (60) is as following;:

n+1 n
E 7E :CABBn+1/2a
61)
Brt3/2 _ gnt1/2 (
L = CAEEn+1.
However, we will focus on the higher-order accuracy scheme StaggeredLF4.
Application of the StaggeredLF4 to our particular case yields:
Ertl - E" 1
— = A + f62k2ABAEAB CBn+1/2,
k 24 (62)

Brt3/2 _ Bntl1/2
k

= (AE + 21462]{32AEABAE> cEnTL.

INRIA

On high-order Leap-Frog schemes combined with a DG method 55

Expressing E"*! from the first expression in (62) and plugging into the second one, we
have:

1
E7L+1 — En T ke <AB 4 24]{5202ABAEAB> Bn+1/2,

B"H3/2 = B2 ke (AE + 214k2c2AEABAE> E"T =
1
= kc (AE + 24/€262AEABAE> E"4

1 1
+ (I + k22 (AE + 24k:2c2AEABAE> (AB + Mk;chABAEAB)> B t1/2,

These expressions can be written in the matrix form:

En+1 T Sl E"
= (63)
Br3/2 Sy I+ 825 Br1/2
=C
where we denote:
1
S1 = ke (AB + MICQCQABAEAB>, (64)
1
Sy = ke (AE + MchQAEABAE) (65)

Now, given space discretization matrices Ag, Ap, the amplification matrix C' can be com-
puted with help of (64), (65) and (63) allows to perform explicit time integration, providing

stability condition holds.

Particular problem: electromagnetic waves between two metallic plates
Now we are ready to apply all the techniques described above for finding high-order solution

approximation, the DG method for spatial discretization and the StaggeredLF4 scheme for

RR n°® 7067

56 D. Ponomarev

integration in time.
Particular case that we focus on is one-dimensional wave problem of finding electromag-
netic field between 2 plates of perfect conducting metall that implies homogeneous Dirichlet

boundary conditions for electrical field:

E(0,t) = E(L,t) = 0. (66)

Imposing this condition automatically determines behavior at the boundaries of magnetic
field due to validity of Maxwell’s equations close to boundary. Indeed, taking time derivatives

of (66) and utilizing (59) we arrive at

B, (0,t) = B.(L,t) = 0. (67)

As it was mentioned before when the wave equation problem was reduced to (16) and also
discussed during StaggeredLeapFrog2 scheme demonstration (both in the first part of the
current work), the conditions (67) are redundant from mathematical point of view, since
they follow from the equations and thereby are satisfied automatically, but in our approach,
when discretizations in space and time are sequential, it is important to write them down
separately because they are necessary parts of space discretization operators Ag and Ap

that we want to construct.

INRIA

On high-order Leap-Frog schemes combined with a DG method 57

Therefore, the problem to solve is as follows:

OF 0B
E—_C%, 0<$<L,t>0,
0B ok
R L
o Cax’ O<ax<L,t>0,
E(0,t) = E(L,t) =0,
(68)
B.(0,t) = B.(L,t) =0,
T
r—c)
(,0) = sin T
B(z,0) =0,
where initial conditions were chosen in order to simply the exact solution guess:
. (T mct
E(x,t) = sin (f) cos <L> ,
(69)

B(z,t) = —cos (fo) sin (WLCt) ,

allowing to compare results with.

We start from discretization in space and we will follow exactly the same line as in the
previous part, when the advection equation "toy problem” was considered.

According to the DG method, the approximated solutions are sought inside each element

DF = [z}, x’fvp] (k=1,..., K):

Biw.t) = S BE 0k (o).

n=1

Np
Bji(w,t) = Y BE(t)U}(x).
n=1

The weak formulation follows:

RR n°® 7067

58 D. Ponomarev

N, dAk » " x}f\,

2 2 p @@ =5 B/ W) i (w)ie = [(BY W @37
EMZ”J E(Sf‘j)T =f5

N, dégk(t) " Ny . T s e

2 M — ;CE K (SE) = [_ij YE@))])

As in the demonstration of the DG method applied to the advection equation that
was given before, we choose Legendre polynomials as basis functions and rewrite the weak
formulation (we omit some details and explanations avoiding repetition of what has already

been said in the previous part of the work):

k k:
th ZBk = @)

k k
® dB ZcE’“ — A @I

Now we come to the point where numerical fluxes on the boundaries of the domain have
to be chosen in order to satisfy the boundary conditions.

For electrical field we have homogeneous Dirichlet boundary conditions whose approxi-
mation is straightforward: f7|,1 = fE|zK =0.

The condition f7|,1 = 0 can be looked at as zeroing the central numerical flux between
the left boundary of the leftmost element (k = 1) giving contribution cF} (z{) and the right
boundary of some "ghost” element to the left of it bringing value —cE} (x1). Absolutely the
same thing can be done with attaching artificial element to the rightmost element (k = K)
and look at the condition fﬂz%p = 0 as the result of central numerical flux approximation

between them. These boundary conditions are illustated on Fig. 9.

INRIA

On high-order Leap-Frog schemes combined with a DG method 59

1 k—1 k k+1 K
D D D D D
—cEj(0) — |« cE(0) cBff(L) — |« —cE{(L)
I S ' t . t t
z1=0 :c}\,p zbt xlfv;l =of af,= A xlf;;l o :cﬁp =L

Fig. 9: Imposing Dirichlet boundary conditions in the DG method

1 k—1 k k+1 K
D D D D D
e —. e e e e prem—— ., v o —.
eBi(0) — | = cBi(0) cB{(L) — | & eB(L)
I : . . t t
=0 x%,p zh! xij\,‘,pl =zf x’;,p = ph+l acﬁ;:l zf xﬁp =

Fig. 10: Imposing Neumann boundary conditions in the DG method

In a similar fashion, homogeneous Neumann boundary conditions for the magnetic field

can be treated. Again, employing "ghost element” principle we can consider condition
0B
ox

value coming from the "ghost” element placed to the left of the considered one (k = 1),

= 0, say, on the left boundary of the domain, as equality of cBj}:(z1) to exactly the same

1
then using central numerical flux yields f3[,1 = 3 (¢Bj(21) + ¢Bj(21)) = ¢Bp(z1). The
~—

=0
same considerations can be applied to the right boundary of the domain, this leads to the

= cBE(mﬁp).
~—
=L

analogous boundary condition f5|,x
p

Next, we consider internal boundaries between all the elements.
We firstly start with choosing the purely central numerical fluxes for this purpose.

The weak formulation for all the internal and the boundary elements gives:

RR n°® 7067

60

D. Ponomarev

NP
— 3 [(-285 + vk, Jukah,) - 2kahvleh)) Bl o)+
j=1
0l (kW3 (k) B2
NP
— 3 [(-285 + 0k, k() BH®) + vl ok,)03k, B3]
j=1
c &
— 3 (-2 + vk ah, Wi ak,) - whEhukh) Bie) +
j=1
G i G BT Al OB L Gl L O] B
2<k<K-—1,
¢ &
— 3 [(285+ vk, b (eK,) — bl eh)) B+
j=1

+ Rk, 0 @k B @) - wf e @H EF)]

2<k<K -1,

Il

e S (285 20K @K, ok (@,) — v @)K) BE (1) -

— F @) @) BET)]
NT’
— e 2 | (285 = v E @R @) B @) — oF @lOwf T OB @)
j=1

The same can be written in more convenient form (so that discretization matrix elements

are independent of an element index), in terms of the normalized Legendre polynomials:

dEL(t)
dt

NP
— 2 [(<285 + Pa(D P (1) = 2Pa (F1)P (1) B (@) +
+ P (V)P (-1 B3 (1)
N,

INRIA

On high-order Leap-Frog schemes combined with a DG method 61

dEF(t) c -
T = Y (2854 PoaPoi (1) = P ()P (1) B0 +

+ Pia(D)P 1 (-1)BJTH (1) — P ()P ()BT (1),

2<k<K-1,
dgi(t) -z N (=2Sji + Pi1(1)Py_1(1) = Py (1) P4 (~1)) EX(t) +
—ilﬂl(l)le(—l)Ef+1(t) — P (-1)P (DEF ()]
2<k<K-1,
dEdi O - S (=285 + 2P 1 ()P 1(1) = Py (=) Py (—1) BE (1)
B — P (-)P(DBE1)]
B e N (=285 = Pea(-DPa (<) BN () — Poa ()P, (B 1)

The same procedure can be done in case when the purely upwind numerical fluxes

are used at all the internal boundaries.

The weak formulation yields:

dE} 2 & .
0 25 (s e, ol a,) ol hel) B
j=1
del (t) 2c oL 1/..1 1/..1 frl
i = (_Sji +¥i (wn,); (pr)) Ei(t)
=1
dEF 2 .)
L0 25 (s, k) BED) - vhehul @B 0).

<.
Il
—

2< k<K -1,

RR n°® 7067

62 D. Ponomarev

Bk 2 & A)
Bl 2eS [(~su+ vk, Jhak,)) BEO) - phGhl @hEE)]
j=1
2<k<K -1,
dE[(t) 2c o K(K\ KK AK K(K\ K-1/ K\yRK-1
L= S (S e @R el @) BE() - e @l @) B)]
j=1
dBK r A)
cO RS [B () — e B)
j=1

Rewriting the same in terms of Legendre polynomials:

dEit<t> - - N (=S5 + P (1D)P;-1(1) = P (—1)Py1 (—1) BX (1)

B _ 2k N (~Sji 4 Pt ()P, (1) EXD)

dEZZ(t) - N (=8 + Poa(Pa() BY®) — Poa(-DPa (DB ()],
a 2I<k<K-1,

dBft(t) - = N (=S5 + Pt (WP 1 (1) B4 () = Pioa(-)P (DB)]
"~ 2<k<K-1,

dE(iZ(t) o N (=854 Pea(DPa(1) BE() - Pa(-DPa(DBS ()] |

dzig(t) _ __é?i é% [——Ebzﬁdz(t)~— Py ()P (D) ES (1)

This allows to form space discretization matrices Agp and Ap (which also incorporate

boundary conditions for electrical and magnetic fields) for the both cases of the numerical

INRIA

On high-order Leap-Frog schemes combined with a DG method 63

flux choice, and once it is done, the problem reduces to the set of ODE problems:

dE .
— =cAgB
dl: cABD,
dB .
— =cAgE
ar R

with initial values E(O), E(O) computed by means of Legendre polynomial basis expansions
of initial conditions of the original problem (68).
Next, we proceed to perform integration in time applying StaggeredLF4 scheme according

to (63)-(65):

B! I S, E"
Bnrt3/2 Sy I+ 555, Bn-&-l/2

1
where we denote S; = k¢ (AB + 24k:QCQABAEAB), Sy = ke (Ap + 3 k*FApApAg).
Finally, we utilize Legendre polynomial basis expansions again to pass from the coeffi-

cients E, B to the real values of the fields E, B in space at the final time of integration.

Fig. 11-14 show results for both choices of numerical flux and different values of the
time step (that is seen on the plots by varying total time of integration 7" keeping the same
number of time steps): regular and critical (i.e. the time step size corresponding to the
stability region border - when instability just starts to occur) . The following parameters
were used: length of physical (spatial) domain L = 10, the light propagation speed ¢ = 0.9,
number of elements K = 10, number of points inside an element N, = 4, number of time

steps M = 20.

RR n°® 7067

64 D. Ponomarev

Solution for E at time t=5 with central num. fluxes

Solution for & at time =5.125 with central num. fluxes
016 . X - . R

0sf
06

Odf-- .

o4l

06F

&t

o ; R I ; i N ; 4 i R I ; i
0

Fig. 11: Solution of Maxwell’s equations using the DG method with central numerical fluxes
and the time step such that stability condition is surely fulfilled (numerical solution
totally fits analytical)

Solution for £ at time t=10 with central num. fluxes Solution for B at time t=10.25 with central num. fluxes
LAl e e e e 003 e et e e e e et e e e

02

Computed
Analytical |
i

g 9 10

ra
w
=
e
)
b

Fig. 12: Solution of Maxwell’s equations using the DG method with central numerical fluxes
and the time step such that stability condition starts being violated

INRIA

On high-order Leap-Frog schemes combined with a DG method 65

Solution for E at time t=0.28 with upwind num. fluxes Solution for B at time t=0.287 with upwind num. fluxes

01p

Fig. 13: Solution of Maxwell’s equations using the DG method with upwind numerical fluxes
and the time step such that stability condition is surely fulfilled (numerical solution
totally fits analytical)

Solution for E at time t=0.56 with upwind num. fluxes Solution for B at time t=0.574 with upwind num. fluxes

Fig. 14: Solution of Maxwell’s equations using the DG method with upwind numerical fluxes
and the time step such that stability condition starts being violated

RR n°® 7067

66 D. Ponomarev

5 Conclusions and final remarks

In the present work, overview of different numerical schemes, general notions and essential
properties of numerical methods were pedagogically considered and accent was made on
application of the Discontinuous Galerkin method to do spatial discretization first and then
employ the StaggeredLeapFrog4 finite difference scheme to perform integration in time of

a linear hyperbolic problem, namely electromagnetic wave propagation problem was covered.

Discontinuous Galerkin methods due to (53) allow to achieve any desired high order ac-
curacy in space by refining mesh or increasing interpolation order inside an element, whereas
the StaggeredLF4 scheme gives the fourth order of accuracy in time. The latter, being an

explicit scheme has limitations dictated by the stability restrictions.

It happened to be not feasible to explicitly express stability condition by means of finding
spectral radius of amplification matrix of the whole DG-StaggeredLF4 method. Complica-
tion is related with the fact that the amplification matrix C in (63) turns out to be extremely
close to the identity matrix (that is no wonder due to the fact that for quite fine spatial
grid we obviously have a diagonally dominated matrix with values on the diagonal close to

unities).

The particular problem of electromagnetics was considered to apply the discussed method
and study stability properties depending on choice of the numerical flux on internal bound-
aries between all the elements. Choice of the numerical flux, that is an essential ingredient
of the DG method, as it was demonstrated at the end of the second part, does not have
strong impact on the solution when high-order interpolation is used, however, according

to the example giving in the third part, a numerical flux might affect stability properties

INRIA

On high-order Leap-Frog schemes combined with a DG method 67

of the method. In the present work two typical choices of the linear numerical flux were
considered - purely upwind and purely central. The results obtained and plotted at the end
of the previous part allow us to draw conclusion that for modal approach utilizing Legendre
polynomial basis functions to approximate solution by the DG method use of the purely
central numerical fluxes is much more preferable in comparison with purely upwind due to
less strict limitation on time step size dictated by the stability issue. This can be seen on
those plots where instability starts to occur, these results are plotted for different choices
of total time of integration (that is different maximal values of time steps providing the to-
tal number of time steps is fixed) for the purely upwind and purely central numerical fluxes
cases. This allows us to conclude that the purely central numerical flux gives an opportunity
to use approximately more than 15 times greater time step being compared to the purely

upwind numerical flux case.

It still needs to be verified if the same result holds for the more commonly chosen nodal

approach, that is using Lagrangian polynomial basis for solution approximation inside an

element.

RR n°® 7067

68 D. Ponomarev

6 Acknowledgements

The present work was made under assistance and collaboration with Stéphane Lanteri,
Victorita Dolean and Stéphane Descombes. The topic of the current pedagogical research
work was also proposed by them and, therefore, the work would not only be completed, but

would not even appear at all without their direct participation.

INRIA

On high-order Leap-Frog schemes combined with a DG method 69

7 Appendix - MATLAB Codes

MATLAB codes for the programs that were used within the text of the current work for

demonstations are given below in the following order:

o StaggeredLF2 scheme demonstration for the wave equation

e Demonstration of the DG method for the advection equation - purely central internal

numerical fluxes

e Demonstration of the DG method for the advection equation - purely upwind internal

numerical fluxes

e Maxwell’s equations problem in between 2 metallic plates - purely central internal nu-

merical fluxes

e Maxwell’s equations problem in between 2 metallic plates - purely upwind internal

numerical fluxes

e Auxiliary function for symbolic computation of normalized Legendre polynomials used

in the DG method

RR n°® 7067

70

D. Ponomarev

22.07.09 23:44 D:\MATLAB\LF2_stable.m

1 of 3

o

% StaggeredLF2 scheme demonstration by Dmitry Ponomarev (22/07/2009).

% Define space and time intervals and velocity
L=10;
T=10;
c=1.5;

% Define uniform space and time grid

N=49; % 50 space interval
M=99; % 100 time intervals

k=T/ (M+1) ;
h=L/ (N+1);

x=zeros (N+2) ;
t=zeros (M+2);

x=0:h:L;
t=0:k:T;

% Here, k=0.1, h=0.2, c=1.5
% CFL condition k <= h/c is satisfied (1 < 4/3), thus we have stability

% Define desired time values to plot the solution at
times=(0, 0.01*T, 0.03*T, 0.05*T, 0.07*T, 0.1*T, 0.3*T, 0.5*T, 0.7*T, T];

% Initialization of variables
y=zeros (1,N+2);

y_ex=zeros (1,N+2);

u=zeros (M+2,N+2) ;

v=zeros (M+2,N+2) ;

%u_ex=zeros (1,N+2);
$v_ex=zeros (1,N+2);

% Initial conditions
u(l,:)=pi*c/L*cos (pi* (x+h/2)/L);

v(l,:)=zeros(1,N+2);

% Boundary conditions on v

v(:,1)=zeros(1,M+2);
v(:, (N+2))=zeros (1,M+2);

% Computation in time

% Time loop
for n=1:(M+1)

% Computation in space

INRIA

On high-order Leap-Frog schemes combined with a DG method

71

22.07.09 23:44 D:\MATLAB\LF2_stable.m

2 of 3

% Separated calculation utilizing boundary condition
u(n+l,1)=u(n,1)+k*c/h*v(n,2);

% Space loop
for j=2:(N+1)

u(n+l, j)=u(n, j)+k*c/h* (v(n, j+1)-v(n,3));
end

% Separated calculation utilizing boundary condition
u(n+l,N+2)=u(n+1,N+1);

end

Solutions for the auxilary variables u and v may be verified

o0 ae

syms t_;

© 0P

% Exact solutions for u and v
u_ex=pi*c/(2*L) * (cos (pi/L* (x+h/2-c*t_))+cos (pi/L* (x+h/2+c*t_)));
v_ex=pi/ (2*L)* (-cos (pi/L* (x-c* (t_+k/2))) +cos (pi/L* (x+c* (t_+k/2))));

for i=l:length(times)

t_=times(i);

figure

plot (x,eval (u_ex),'-b', x,u(l+round((M+1)*t_/T),:),"'—.x");
legend ('Exact solution', 'StaggeredLF2');

title(['Plot for u at t=',num2str(t_)]);

grid on;

figure

plot (x,eval (v_ex),'-b', x,v(l+round((M+1)*t_/T),:),"'—.x");
legend('Exact solution', 'StaggeredLF2');

title(['Plot for v at t=',num2str(t_)]);

grid on;

J© P o o d° df o o° o d° of o o° o oo oo o of

o
=]
Q

% Verification of the solution for y

syms t_;

% Exact solition for y

y_ex=0.5% (sin(pi/L* (x-c*t_))+sin(pi/L* (x+c*t_)));
for i=1:length(times)

times (i) ;

condition on y

% Integrating u/c over s
for j=2:(N+2)

v (3)=y (3-1)+h/c*u(l+round ((M+1) *t_/T), j-1);
end

e to get y

v (n+l, j)=v(n, j) +k*c/h* (u(n, j)-u(n, j-1) +k*c/h* (v(n, j+1) -2*v (n, j) +v (n

,3-1))) 5

RR n°® 7067

72

D. Ponomarev

22.07.09 23:44

D:\MATLAB\LF2_stable.m

3 of 3

nteg

v (Jj)=sin(pi*x(j)/L)+k*sum(v

% end

figure
plot (x,eval (y_ex),'-b"',

title(['Sol n of the wa
legend ('Exact solut
grid on

end

rate

1(1+ (M+1

in time

)*E_/T),3))

t=',num2str(t_)])

INRIA

On high-order Leap-Frog schemes combined with a DG method

73

22.07.09 23:44 D:\MATLAB\DG_adv_cflux_BE.m 1 of 4

%% Advection equation DG-BackwardEuler solver by Dmitry Ponomarev (22/07/2009).

We use Legendre basis functions and as internal numerical fluxes we take

purely central fluxes.

K=20; % number of elements = space intervals
Np=2; % number of points inside an element = interpolation order + 1
L=10; % spatial interval

c=0.05; % velocity
h=L/K; % size of an element

% Initialization

M=2; % number of time points
T=10; % total time of integration

dt=T/(M-1); % time step size

;o0
t=0:dt:T; % time discre ation

X=0:h:L; % spatial interval partitioning into elements

x=zeros (K,Np); % grid matrix; first index stands for an element number, second for a¥k

point inside it

u=zeros (M,K*Np); % solution vector
u_=zeros (M,K*Np); % vector of expansion coefficients

S_=zeros (Np,Np); % stiffness matrix

A=zeros (K*Np,K*Np); %

B=zeros (K*Np,K*Np); % amp

lmbds_A=zeros (1,K*Np); % spectrum of A
% of

discretization matrix
lification matrix

lmbds_B=zeros (1,K*Np); % spectrum B

I=eye (K*Np,K*Np); % auxiliary identity matrix
% Initial condition

syms x
b=sin(x_);

;

% Boundary condition (on the left boundary)
a=-sin(c*t);

% Generating grid

for k=1:K
for 1=1:Np
x (k,1)=X (k) +h* (1-1) / (Np-1) ;
end
end

% Transforming initial condition into expansion coefficient

RR n°® 7067

D. Ponomarev

22.07.09 23:44 D:\MATLAB\DG_adv_cflux_BE.m 2 of 4
syms x_;
for k=1:K

for 1=1:Np

3= (k-1) *Np+1;
u_(1,j)=2/h*int (legendre_norm_symb ((2*x_-x (k,1)-x(k,Np)) /h,1-1)*b, x_,x(k, 1), x«
(k,Np)) ;
end
end

% Computing the stiffness matrix

k=1; % take arbitrary element, since it is the same for all elements
for i=1:Np
for j=1:Np
tmp=diff (legendre_norm_symb ((2*x_-x(k,1)-x(k,Np))/h,i-1),x_);
S_(i,Jj)=int (legendre_norm_symb ((2*x_-x(k, 1) -x (k,Np)) /h, j-1) *tmp, x_, x (k, 1) ,x (k, ¥
Np));
end
end

% Applying the DG method to obtain spatial discretization matrix A
for i=1:K*Np
for j=1:K*Np
if (mod(i,Np)~=0) i_=mod(i,Np); else i_=Np; end
if (mod(j,Np)~=0) j_=mod(j,Np); else j_=Np; end
if ((i<=Np) && (j<=Np))

% k=1; % the first element (left boundary)
% Since boundary condition is not homogeneous, it doesn't contribute to the matrix
A(i,j)=-2*S_(i_,j_)+legendre_norm_symb(1l,i_-1)*legendre_norm_symb (1, j_-1)
A (i, j+Np)=legendre_norm_symb (1,i_-1) *legendre_norm_symb (-1, j_-1);
elseif ((i>(K-1)*Np) && (3> (K-1)*Np))
% k=K; % the last element (right boundary)
% Since c is positive, no boundary conditions condition can be imposed
% here: the value here is completely defined by the equation
A(i,j)=-2*S_(i_, j_)+2*legendre_norm_symb(l,i_-1)*legendre_norm_symb (1, j_-¥
1);

A(i,j)=A(i,J)-legendre_norm_symb(-1,i_-1)*legendre_norm_symb (-1, j_-1)
A (i, j-Np)=-legendre_norm_symb(-1,i_-1)*legendre_norm_symb (1, j_-1)
elseif ((j>Np) && (floor((j-1)/Np)==floor((i-1)/Np)) && (j<=(K-1)*Np))

% k=1+floor((j-1)/Np); % all internal elements
A(i,j)=-2*S_(i_,j_)+legendre_norm_symb(1l,i_-1)*legendre_norm_symb (1, j_-1)
A(i,j)=A(i,Jj)-legendre_norm_symb(-1,i_-1)*legendre_norm_symb (-1, j_-1)

A (i, j+Np)=legendre_norm_symb (1,i_-1) *legendre_norm_symb (-1, j_-1);
A (i, j-Np)=-legendre_norm_symb (-1,i_-1)*legendre_norm_symb (1, j_-1);

% Computing amplification matrix

INRIA

On high-order Leap-Frog schemes combined with a DG method

22.07.09 23:44 D:\MATLAB\DG_adv_cflux_BE.m 3 of 4

B=inv (I-c*dt*A);

Computing contribution from (left) boundary condition and integrating

% altogether using BackwardEuler scheme

f=zeros (1,K*Np);
for m=1:(M-1)
for i=1:Np
f(i)=2/h*c*a(m+1) *legendre_norm_symb (-1,1i-1);
end
u_(m+l, :)=B*u_(m, :) "+dt*B*f';
m % displays current time step to track status and estimate computational time

end

3% Recover solution from its expansion coefficient

for m=1:M
u(m, :)=zeros (1,K*Np) ;
for k=1:K
for 1=1:Np
j=(k-1) *Np+1;
for i=1:Np
u(m, j)=u(m, j)+u_(m, (k-1) *Np+i) *legendre_norm_symb ((2*x (k, 1) -x(k, 1) -x(k, ¥

% Plotting solution

figure;
hold on;
grid on;
for k=1:K
plot (x(k,:),u(M, (1+(k-1)*Np) :k*Np), '-r');
plot (x(k,:),sin(x(k, c*t (M)), '
legend ('Computed', 'Analytical',
3 legend ('Computed', 'Analyt

end

title(['Solution at T=', num2str(T), ' with central num. fluxes']);

% Stability checks

lmbds_A=eig (A);

RR n°® 7067

D. Ponomarev

22.07.09 23:44 D:\MATLAB\DG_adv_cflux_BE.m 4 of 4

1mbds_B=eig (B) ;

max (real (lmbds_A))
max (abs (lmbds_B)) %

INRIA

On high-order Leap-Frog schemes combined with a DG method

7

22.07.09 23:46 D:\MATLAB\DG_adv_upwind_BE.m 1 of 3

%% Advection equation DG-BackwardEuler solver by Dmitry Ponomarev (22/07/2009).

We use Legendre basis functions and as internal numerical fluxes we take

purely upwind fluxes.

K=10; % number of elements = space intervals
Np=4; % number of points inside an element = interpolation order + 1
L=10; % spatial interval

c=0.05; % velocity
h=L/K; % size of an element

% Initialization

M=2; % number of time points
T=10; % total time of integration

dt=T/(M-1); % time step size

;o0
t=0:dt:T; % time discre ation

X=0:h:L; % spatial interval partitioning into elements

x=zeros (K,Np); % grid matrix; first index stands for an element number, second for a¥k

point inside it

u=zeros (M,K*Np); % solution vector
u_=zeros (M,K*Np); % vector of expansion coefficients

S_=zeros (Np,Np); % stiffness matrix

A=zeros (K*Np,K*Np); %

B=zeros (K*Np,K*Np); % amp

lmbds_A=zeros (1,K*Np); % spectrum of A
% of

discretization matrix
lification matrix

lmbds_B=zeros (1,K*Np); % spectrum B

I=eye (K*Np,K*Np); % auxiliary identity matrix
% Initial condition

syms x
b=sin(x_);

;

% Boundary condition (on the left boundary)
a=-sin(c*t);

% Generating grid

for k=1:K
for 1=1:Np
x (k,1)=X (k) +h* (1-1) / (Np-1) ;
end
end

% Transforming initial condition into expansion coefficient

RR n°® 7067

78

D. Ponomarev

22.07.09 23:46 D:\MATLAB\DG_adv_upwind_BE.m 2 of 3
syms x_;
for k=1:K

for 1=1:Np

j=(k-1) *Np+1;

u_(1,j)=2/h*int (legendre_norm_symb ((2*x_-x (k,1)-x(k,Np)) /h,1-1)*b, x_,x(k, 1), x«

(k,Np)) ;
end
end

% Computing the stiffness matrix
k=1; % take arbitrary element, since it is the same for all elements
for i=1:Np
for j=1:Np
tmp=diff (legendre_norm_symb ((2*x_-x(k,1)-x(k,Np))/h,i-1),x_);

S_(i,Jj)=int (legendre_norm_symb ((2*x_-x(k, 1) -x (k,Np)) /h, j-1) *tmp, x_, x (k, 1), x (k

Np));
end
end

% Applying the DG method to obtain spatial discretization matrix A

for i=1:K*Np
for j=1:K*Np
if (mod(i,Np)~=0) i_=mod(i,Np); else i_=Np; end
if (mod(j,Np)~=0) j_=mod(j,Np); else j_=Np; end
if ((i<=Np) && (j<=Np))

% k=1; % the first element (left boundary)
% Since boundary condition is not homogeneous, it doesn't contribute to the matrix
A(i,Jj)=-S_(i_, j_)+legendre_norm_symb (l,i_-1)*legendre_norm_symb (1, j_-1);

elseif ((i>(K-1)*Np) && (3> (K-1)*Np))
k=K; % the last element (right boundary)

o

Since ¢ is positive, no boundary conditions condition can be imposed

% here: the value here is completely defined by the equation
A(i,j)=-S_(i_, j_)+legendre_norm_symb(l,i_-1)*legendre_norm_symb(1l,j_-1);
A (i, j-Np)=-legendre_norm_symb (-1,i_-1) *legendre_norm_symb (1, j_-1);
elseif ((3>Np) && (floor((j-1)/Np)==floor((i-1)/Np)) && (j<=(K-1)*Np))
% k=1+floor((j-1)/Np); % all internal elements
A(i,Jj)=-S_(i_, j_)+legendre_norm_symb (l,i_-1)*legendre_norm_symb (1, j_-1);
A (i, j-Np)=-legendre_norm_symb(-1,i_-1)*legendre_norm_symb (1, j_-1);
end
end
end
A=-2/h*A;

% Computing amplification matrix

B=inv (I-c*dt*A);

% Computing contribution from (left) boundary condition and integrating

’

"4

INRIA

On high-order Leap-Frog schemes combined with a DG method

79

22.07.09 23:46 D:\MATLAB\DG_adv_upwind_BE.m 3 of 3

3% altogether using BackwardEuler scheme

f=zeros (1,K*Np);
for m=1:(M-1)
for i=1:Np
f(i)=2/h*c*a(m+1l) *legendre_norm_symb (-1,1i-1);
end
u_(m+l, :)=B*u_(m, :) '+dt*B*f';

m % displays current time step to track status and estimate computational time

end

% Recover solution from s expansion coefficient vector
for m=1:M
u(m, :)=zeros (1,K*Np) ;
for k=1:K
for 1=1:Np
j=(k-1) *Np+1;
for i=1:Np

Np))/h,i-1);

% Plotting solution

figure;
hold on;
grid on;
for k=1:K
plot (x(k,:),u(M, (1+(k-1)*Np) :k*Np), '-r');
x (k,

(
plot(x(k,:),sin(x(k,:)-c*t(M)), '-b");
legend ('Computed', 'Analytical', 'Location', 'SouthEast');
% nd ('Computed', 'Analytical');
end
title(['Solution at T=', num2str(T), ' with upwind num. fluxes']);

ability ch

1mbds_A=eig (A);
1mbds_B=eig (B) ;

max (real (lmbds_A)) % maxima real eigenvalue of discretization matrix
max (abs (lmbds_B)) % spectral radius of amplification matrix

u(m, j)=u(m, j)+u_(m, (k-1) *Np+1i) *legendre_norm_symb ((2*x (k, 1) -x (k, 1) -x (k

’

"4

RR n°® 7067

80

D. Ponomarev

23.07.09 0:06 D:\MATLAB\DG_Maxwell_cflux_LF4.m 1 of 4

%% Maxwell's equation DG-StaggeredLF4 solver by Dmitry Ponomarev (22/07/2009).

We use Legendre basis functions and as internal numerical fluxes we take

purely central fluxes.

K=10; % number of elements = space intervals

Np=4; % number of points inside an element = interpolation order + 1
L=10; % spatial interval

c=0.9; % light propagation speed

h=L/K; % size of an element

=
Il

IN)
=
o

number of time points

H
]
il
o

time of integration

% Initialization
dt=T/(M-1); % time step size
t=0:dt:T; % time discretization

X=0:h:L; % spatial interval partitioning into elements

x=zeros (K,Np); % grid matrix; first index stands for an element number, second for a¥k
point inside it

E=zeros (M,K*Np); % electric field vector

E_=zeros (M,K*Np); % vector of coefficients of electric field expansion
B=zeros (M,K*Np); % magnetic field vector

B_=zeros (M,K*Np); % vector of coefficients of magnetic field expansion
w=zeros (M, 2*K*Np); % combined electric and magnetic fields vector
w_=zeros (M, 2*K*Np) ; % combined vector of coefficients

S_=zeros (Np,Np); % stiffness matrix

% Discretization matrices for electric and magnetic fields

A_E=zeros (K*Np, K*Np) ;
A_B=zeros (K*Np, K*Np) ;

% Some auxiliary matrices

Sl=zeros (K*Np, K*Np) ;
S2=zeros (K*Np, K*Np) ;
Cl=zeros (K*Np, K*Np) ;
C2=zeros (K*Np, K*Np) ;

I=eye (K*Np, K*Np) ;

% Amplification matrix and its eigenvalues

C=zeros (2*K*Np, 2*K*Np) ;
1lmbds_C=zeros (1, 2*K*Np) ;

% Initial conditions

INRIA

On high-order Leap-Frog schemes combined with a DG method

81

23.07.09 0:06 D:\MATLAB\DG_Maxwell_cflux_LF4.m 2 of

4

syms x_;
a=sin(pi*x_/L);
b=cos (pi*x_/L) *sin(-pi*c*0.5*dt/L); % this is not zero due to the staggered grid

% Generating grid

for k=1:K
for 1=1:Np
x(k,1)=X(k)+h* (1-1)/ (Np-1);
end
end

% Transforming initial conditions into expansion coefficient vectors

3= (k-1) *Np+1;

the stiffness matrix

arbitrary element, since it is the same for all elements

for j=1:Np
tmp=diff (legendre_norm_symb ((2*x_-x(k,1)-x(k,Np))/h,i-1),x_);

end

% Applying the DG method to obtain spatial discretization matrices A_E and A_B

for i=1:K*Np
for j=1:K*Np
if (mod(i,Np)~=0) i_=mod(i,Np); else i_=Np; end
if (mod(j,Np)~=0) j_=mod(]j,Np); else j_=Np; end
if ((i<=Np) && (J<=Np))
% k=1; % the first element (left boundary)
cell principle)
A_E(i,J)=-S_
1);
A_E (i, j+Np)=0.5*legendre_norm_symb(1l,i_-1)*legendre_norm_symb(-1,J_-1);
A_B(i,3J)=-5

A_B(i,3j)=A_B(i,Jj)-legendre_norm_symb(-1,i_-1)*legendre_norm_symb (-1, j_-1);
A_B (i, j+Np)=0.5*legendre_norm_symb(1l,i_-1)*legendre_norm_symb (-1, J_-1);

(i_,3j_)+0.5*1legendre_norm_symb (1l,i_-1) *legendre_norm_symb (1, j_

E_(1,j)=2/h*int (legendre_norm_symb ((2*x_-x(k,1)-x(k,Np)) /h,1-1) *a,x_,x(k,1),x¥

(k,Np)) ;
B_(1,j)=2/h*int (legendre_norm_symb ((2*x_-x(k,1)-x(k,Np)) /h,1-1)*b,x_,x(k, 1), x«
(k,Np)) ;
end
end

S_(i,j)=int (legendre_norm_symb ((2*x_-x(k,1)-x(k,Np)) /h, j-1) *tmp,x_,x (k,1),x(k, ¥

% We use homogeneneous conditions: Dirichlet for E, Neumann for B (by utilizing ghostw

-

(i,j_)+0.5*legendre_norm_symb(1l,i_-1)*legendre_norm_symb (1, j_-¥

RR n°® 7067

82

D. Ponomarev

23.07.09 0:06 D:\MATLAB\DG_Maxwell_cflux_LF4.m 3 of 4

elseif ((i>(K-1)*Np) && (3> (K-1)*Np))

% k=K; the last element (right boundary)

Again we use homogeneneous conditions: Dirichlet for E, Neumann for B (by utilizing«
right ghost cell)

A_E(i,J)=-S_(i_,Jj_)-0.5*legendre_norm_symb(-1,i_-1)*legendre_norm_symb (-1, ¥

j_-1);
A_E(i,Jj-Np)=-0.5*legendre_norm_symb(-1,i_-1)*legendre_norm_symb (1, j_-1);
A_B(i,3)=-S_(i_,j_)+legendre_norm_symb(l,i_-1)*legendre_norm_symb (1, j_-1);
A_B(i,j)=A_B (i, j)-0.5*legendre_norm_symb(-1,i_-1)*legendre_norm_symb (-1, j_-¥
1);

A_B(i, j-Np)=-0.5*legendre_norm_symb (-1,i_-1)*legendre_norm_symb (1, j_-1);
elseif ((j>Np) && (floor((j-1)/Np)==floor((i-1)/Np)) && (j<=(K-1)*Np))
% k=1+floor ((j-1)/Np); % all internal elements
A_E(i,3)=-S

(i_,j_)+0.5*legendre_norm_symb(1l,i_-1)*legendre_norm_symb (1, j_-«

1);
A_E(i,Jj)=A_E (i, j)-0.5*legendre_norm_symb(-1,i_-1)*legendre_norm_symb (-1, j_-¥
1)
A_E(i,Jj-Np)=-0.5*legendre_norm_symb(-1,i_-1)*legendre_norm_symb (1, j_-1);
A_E (i, j+Np)=0.5*legendre_norm_symb(1l,i_-1)*legendre_norm_symb(-1,J_-1);
A_B(i,3j)=-S_(i_,Jj_)+0.5*legendre_norm_symb(l,i_-1)*legendre_norm_symb(l, j_-¥
1);
A_B(i,j)=A_B (i, j)-0.5*legendre_norm_symb(-1,i_-1)*legendre_norm_symb (-1, j_-«
1);
A_B(i,j-Np)=-0.5*legendre_norm_symb(-1,i_-1)*legendre_norm_symb (1, j_-1);
A_B(i,j+Np)=0.5*legendre_norm_symb(1l,i_-1)*legendre_norm_symb(-1,J_-1);
end
end
end

% Forming amplification matrix C

Sl=dt*c* (A_B+1/24* (dt*c) "2*A_B*A_E*A_B);
S2=dt*c* (A_E+1/24* (dt*c) "2*A_E*A_B*A_E);
Cl=cat(1,I,s2);

C2=cat (1,81,I+52*S1);

C=cat (2,C1,C2);

% Forming combined electric and magnetic fields expansion coefficients vector
w_(1l,:)=cat(2,E_(1,:),B_(1,:));
% Applying the StaggeredLF4 scheme to perform time integration
for m=1:(M-1)
w_(m+1,:)=C*w_(m, :)";

m % displays current time step to track status and estimate computational time

INRIA

On high-order Leap-Frog schemes combined with a DG method

83

23.07.09 0:06 D:\MATLAB\DG_Maxwell_cflux_LF4.m 4 of 4

% Recover electric and magnetic fields from the expansion coefficients vector

% In order to decrease running time we recover solutions just at the final time of¥
integration,

% but when interested in dynamics on stability boundary, uncommenting this loop will¥
allow

% keeping some transient solutions for plotting

m=M;

$for m=1:M %

E(m, :)=zeros (1,K*Np);
B(m, :)=zeros (1,K*Np);

for k=1:K
for 1=1:Np
j=(k-1) *Np+1;
for i=1:Np

Np))/h,i-1);

(k,Np)) /h,i-1);

% Plotting solutions for electric and magnetic fields

figure;
hold on;
grid on;
for k=1:K
plot (x(k,:),E(M, (1+(k-1)*Np) :k*Np), '-r');
plot(x(k,:),sin(pi*x (k,:) /L) *cos (pi*c*t (M) /L), '-b');
legend('Computed', 'Analytical');
end
title(['Solution for E at time t=', num2str(T), ' with central num. fluxes']);
figure;
hold on;
grid on;
for k=1:K
plot (x(k,:),B(M, (1+(k-1)*Np) :k*Np), '-r');
plot (x(k,:),cos(pi*x(k,:) /L) *sin(-pi*c* (£t (M)+0.5*dt) /L), '-b');
legend ('Computed', 'Analytical', 'Location', 'SouthEast');
% legend ('Computed', 'Analytical');
end
title(['Solution for B at time t=', num2str(T+dt/2), ' with central num. fluxes']);

% Stability checks

1mbds_C=eig (C);
max (abs (lmbds_C)) % spectral radius of the amplification matrix

E(m, j)=E (m, j) +w_(m, (k-1) *Np+1i) *legendre_norm_symb ((2*x (k,1)-x(k, 1) -x(k, ¥

B(m, j)=B(m, j)+w_(m, (K+k-1) *Np+i) *legendre_norm_symb ((2*x (k, 1) -x(k, 1) —x«

RR n°® 7067

84

D. Ponomarev

23.07.09 0:06 D:\MATLAB\DG_Maxwell upwind_LF4.m 1 of 4

%% Maxwell's equation DG-StaggeredLF4 solver by Dmitry Ponomarev (22/07/2009).

We use Legendre basis functions and as internal numerical fluxes we take

purely upwind fluxes.

K=10; % number of elements = space intervals

Np=4; % number of points inside an element = interpolation order + 1
L=10; % spatial interval

c=0.9; % light propagation speed

h=L/K; % size of an element

M=21; % number of time points
T=0.56; % 10*0.9/0.05=10/18~=0.56; time of integration

% Initialization
dt=T/(M-1); % time step size
t=0:dt:T; % time discretization

X=0:h:L; % spatial interval partitioning into elements

x=zeros (K,Np); % grid matrix; first index stands for an element number, second for a¥k
point inside it

E=zeros (M,K*Np); % electric field vector

E_=zeros (M,K*Np); % vector of coefficients of electric field expansion
B=zeros (M,K*Np); % magnetic field vector

B_=zeros (M,K*Np); % vector of coefficients of magnetic field expansion
w=zeros (M, 2*K*Np); % combined electric and magnetic fields vector
w_=zeros (M, 2*K*Np) ; % combined vector of coefficients

S_=zeros (Np,Np); % stiffness matrix

% Discretization matrices for electric and magnetic fields

A_E=zeros (K*Np, K*Np) ;
A_B=zeros (K*Np, K*Np) ;

% Some auxiliary matrices

Sl=zeros (K*Np, K*Np) ;
S2=zeros (K*Np, K*Np) ;
Cl=zeros (K*Np, K*Np) ;
C2=zeros (K*Np, K*Np) ;

I=eye (K*Np, K*Np) ;

% Amplification matrix and its eigenvalues

C=zeros (2*K*Np, 2*K*Np) ;
1lmbds_C=zeros (1, 2*K*Np) ;

% Initial conditions

INRIA

On high-order Leap-Frog schemes combined with a DG method

85

23.07.09 0:06 D:\MATLAB\DG_Maxwell upwind_LF4.m 2 of 4

syms x_;
a=sin(pi*x_/L);
b=cos (pi*x_/L) *sin(-pi*c*0.5*dt/L); % this is not zero due to the staggered grid

% Generating grid

for k=1:K
for 1=1:Np
x(k,1)=X(k)+h* (1-1)/ (Np-1);
end
end

% Transforming initial conditions into expansion coefficient vectors

j=(k-1) *Np+1;
E_(1,j)=2/h*int (legendre_norm_symb ((2*x_-x(k,1)-x(k,Np)) /h,1-1) *a,x_,x(k,1),x¥

B_(1,Jj)=2/h*int (legendre_norm_symb ((2*x_-x(k,1)-x(k,Np)) /h,1-1)*b,x_,x(k, 1), x¥

% Computing the stiffness matrix

k=1; % take arbitrary element, since it is the same for all elements
for i=1:Np
for j=1:Np
tmp=diff (legendre_norm_symb ((2*x_-x(k,1)-x(k,Np))/h,i-1),x_);
S_(i,j)=int (legendre_norm_symb ((2*x_-x(k, 1) -x (k,Np)) /h, j-1) *tmp, x_, x (k, 1), x (k, ¥
Np)) ;
end
end

% Applying the DG method to obtain spatial discretization matrices A_E and A_B

for i=1:K*Np
for j=1:K*Np
if (mod(i,Np)~=0) i_=mod(i,Np); else i_=Np; end
if (mod(j,Np)~=0) j_=mod(j,Np); else j_=Np; end
if ((i<=Np) && (j<=Np))
k=1; % the first element (left boundary)

Y

We use homogeneneous conditions: Dirichlet for E, Neumann for B (by utilizing ghostk
cell principle)

) S_(i_,Jj_)+legendre_norm_symb(1l,i_-1)*legendre_norm_symb (1, j_-1);
A_B(i,J)=-S_(i_,j_)+legendre_norm_symb(l,i_-1)*legendre_norm_symb (1, j_-1);
A_B(i,J)=A_B(i, j)-legendre_norm_symb(-1,i_-1)*legendre_norm_symb (-1, j_-1);

elseif ((i>(K-1)*Np) && (3> (K-1)*Np))
k=K; % the last element (right boundary)

o oe

Again we use homogeneneous conditions: Dirichlet for E, Neumann for B (by utilizingw
right ghost cell)

RR n°® 7067

86

D. Ponomarev

23.07.09 0:06 D:\MATLAB\DG_Maxwell upwind_LF4.m 3 of 4

A_E(i,J)=-S_(i_,3_);
A_E (i, j-Np)=-legendre_norm_symb(-1,i_-1)*legendre_norm_symb (1, J_-1);
A_B(i,3)=-S_(i_,j_)+legendre_norm_symb(l,i_-1)*legendre_norm_symb (1, j_-1);
A_B(i, j-Np)=-legendre_norm_symb (-1,i_-1)*legendre_norm_symb (1, j_-1);
elseif ((j>Np) && (floor((j-1)/Np)==floor((i-1)/Np)) && (j<=(K-1)*Np))

% k=1+floor ((j-1)/Np); % all internal elements
k_=1+floor((j-1)/Np);
A_E(i,3)=-S_(i_,j_)+legendre_norm_symb(l,i_-1)*legendre_norm_symb (1, j_-1);
A_E (i, j-Np)=-legendre_norm_symb (-1,i_-1)*legendre_norm_symb (1, j_-1);
A_B(i,J)=-S_(i_,Jj_)+legendre_norm_symb(l,i_-1)*legendre_norm_symb (1, j_-1);
A_B (i, j-Np)=-legendre_norm_symb(-1,i_-1)*legendre_norm_symb (1, j_-1);

A_FE=-2/h*A_E;
A_B=-2/h*A_B;

% Forming amplification matrix C

Sl=dt*c* (A_B+1/24* (dt*c)"2*A_B*A_E*A_B);
S2=dt*c* (A_E+1/24* (dt*c) "2*A_E*A_B*A_E) ;
Cl=cat (1,I,S2);

C2=cat (1,S1,I+82*S1);

C=cat (2,C1,C2);

% Forming combined electric and magnetic fields expansion coefficients vector
w_(1,:)=cat(2,E_(1,:),B_(1,:));

% Applying the StaggeredLF4 scheme to perform time integration

for m=1:(M-1)

w_(m+l,:)=C*w_(m, :)"';

m % displays current time step to track status and estimate computational time

% Recover electric and magnetic fields from the expansion coefficients vector

% In order to decrease running time we recover solutions just at the final time of¥
integration,

% but when interested in dynamics on stability boundary, uncommenting this loop willk
allow

% keeping some transient solutions for plotting

m=M;
$for m=1:M %

E(m, :)=zeros (1,K*Np) ;
B(m, :)=zeros (1,K*Np) ;

INRIA

On high-order Leap-Frog schemes combined with a DG method

87

23.07.09 0:06 D:\MATLAB\DG_Maxwell upwind_LF4.m 4 of 4

for k=1:K
for 1=1:Np
j=(k-1) *Np+1;
for i=1:Np

Np))/h,i-1);

(k,Np)) /h,i-1);
end

ting solutions for electric and magnetic fields

figure;

hold on;

grid on;

for k=1:K
plot (x(k,:),E(M, (1+(k-1)*Np) :k*Np), '-r');
plot (x(k,:),sin(pi*x(k,:) /L) *cos (pi*c*t (M)/L), '-b');
legend ('Computed', 'Analytical');

end
title(['Solution for E at time t=', num2str(T), ' with upwind num. fluxes']l);
figure;
hold on;
grid on;
for k=1:K
plot(x(k,:),B(M, (1+(k-1)*Np) :k*Np), '-r');
plot (x(k,:),cos(pi*x(k,:)/L)*sin(-pi*c* (£t (M)+0.5*dt) /L), '-b');
legend ('Computed', 'Analytical', 'L ation', 'SouthEast');
% 1 nd ('Computed', 'Analy 1");
end
title(['Solution for B at time t=', num2str(T+dt/2), ' with upwind num. fluxes']);

ability checks

1mbds_C=eig(C);
max (abs (lmbds_C)) % spectral radius of the amplification matrix

E(m, j)=E (m, j)+w_(m, (k-1) *Np+1i) *legendre_norm_symb ((2*x (k, 1) -x (k, 1) -x (k

’

’4

B(m, j)=B(m, j) +w_(m, (K+k-1) *Np+1i) *legendre_norm_symb ((2*x (k, 1) -x (k, 1) -x¥

RR n°® 7067

88

D. Ponomarev

22.07.09 23:56 D:\MATLAB\legendre_norm_symb.m

1 of 1

rator by Dmitry

Rodrigues

f order

function [P_]=legendre_norm_symb (x_,n)
if n==0

P_=1/sqrt(2);
else

syms r;

tmp=eval (1/ (2"n*factorial (n)) *sqrt ((2*n+1) /2) *diff ((r"2-1)
P_=subs (tmp, x_) ;

end

end

omare

v (22/07/20009) .

c polynomial

“n,n));

INRIA

On high-order Leap-Frog schemes combined with a DG method 89

References

[1] Ascher, U. M.
Numerical methods for evolutionary differential equations.

Computational science and engineering , vol. 5, STAM (2008)

[2] Ghrist, M., Fornberg, B., Driscoll, T.A.
Staggered time integrations for wave equations.

STAM J. Nummer. Anal. 38, 718-741 (2000)

[3] Hairer, E., Norsett, S.P., Wanner, G.
Solving ordinary differential equations I - Nonstiff problems.
Springer Series in Computational Mathematics, vol. 8. 2nd rev. ed. 1993. Corr. 3rd

printing, Springer (2008)

[4] Hesthaven, J., Warburton, T.
Nodal discontinuous Galerkin methods: algorithms, analysis, and applications.

Texts in Applied Mathematics, vol. 54, Springer (2008)

[5] Press, W.A., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.
Numerical recipes - The art of scientific computing.

3rd ed., Cambridge University Press (2007)

[6] Thide, B.
Electromagnetic Field Theory.
Upsilon Books (2008)

[7] Verwer, J.G.
On Time staggering for wave equations.

SIAM J. Sci. Comput. 33, 139-154 (2007)

RR n°® 7067

90 D. Ponomarev
Contents

1 Introduction 3

2 Approximation of ODEs and PDEs with finite differences 4

2.1 Runge-Kuttamethods)

2.2 Linear multistep methods oo 0. 6

2.3 Stability, consistency, convergence 7

2.4 Stability on examples. L. oL o e 13

241 Heatequation. 13

242 Waveequation 18

3 Discontinuous Galerkin method oo oL 34

4 Application to the equations of electromagnetics o1

5 Conclusions and final remarks o000 0oL 66

6 Acknowledgements 68

7 Appendix - MATLAB Codes o i 69

INRIA

/<

Unité de recherche INRIA Sophia Antipolis

2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex (France)

Unité de recherche INRIA Futurs : Parc Club Orsay Université - ZAC des Vignes
4, rue Jacques Monod - 91893 ORSAY Cedex (France)
Unité de recherche INRIA Lorraine : LORIA, Technopéle de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-1eés-Nancy Cedex (France)
Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)
Unité de recherche INRIA Rhone-Alpes : 655, avenue de 1’Europe - 38334 Montbonnot Saint-Ismier (France)

Unité de recherche INRIA Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex (France)

Editeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)

http://www.inria.fr

ISSN 0249-6399

