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Abstract:We consider partially overdetermined boundary-value problem for Laplace PDE in a planar simply
connected domain with Lipschitz boundary ∂Ω. Assuming Dirichlet and Neumann data available on Γ ⊂ ∂Ω
to be real-valued functions inW1/2,2(Γ) and L2(Γ) classes, respectively, we develop a non-iterativemethod for
solving this ill-posed Cauchy problem choosing L2 bound of the solution on ∂Ω \ Γ as a regularizing parame-
ter. The present complex-analytic approach also naturally allows imposing additional pointwise constraints
on the solution which, on practical side, can help incorporating outlying boundary measurements without
changing the boundary into a less regular one.
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1 Introduction
Many stationary physical problems are formulated in terms of reconstruction of a harmonic function in
a planar domain from partially available measurements on its boundary. As it is often the case, the values of
both the function and its normal derivative are available only on part of the boundary whereas the main
interest is to determine the values inside the domain or on the unaccessible part of the boundary, or
sometimes even the position of this complementary part of the boundary [2]. The planar formulation is
a simplification that typically arises from original three-dimensional settings whose symmetry properties
allow reformulation of the model in dimension two.

The Cauchy problem for Laplace equation is known to be ill-posed: the famous Hadamard’s example
demonstrates the lack of continuous dependence of the solution onboundary data. This reveals the necessary
compatibility between Dirichlet and Neumann data for the existence of physically meaningful solution and
advocates use of regularization techniques.

Partially overdetermined problems for the elliptic operators have been considered vastly in various
frameworks (see [19] and references therein) and different methods of their regularization and solution have
been developed and investigated.

In the present work, we revisit the very classical setting – Laplace PDE on a simply connected domain
with Lipschitz boundary. Namely, we consider the prototypical case where the domain is the unit disk Ω = D,
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2 | J. Leblond and D. Ponomarev, Harmonic functions recovery from partial data

which is justified by the conformal invariance of Laplace operator. We assume real-valuedness and appro-
priate regularity of the boundary data on a strict subset Γ ⊂ T required for the existence of a unique weak
W1,2(Ω) solution:

{
∆u = 0 in Ω,
u = u0, ∂nu = w0 on Γ with u0 ∈ W1/2,2(Γ), w0 ∈ L2(Γ).

(1.1)

We employ complex-analytic approach which has proven to be rather efficient in dealing with this [3, 6,
10, 11] and more general formulations of the problem: annular setting [21, 24], conductivity PDE [16] and
their mixture [4].

Recall that if a function g = u + iv is analytic (holomorphic), then u and v are real-valued harmonic
functions satisfying the Cauchy–Riemann equations ∂nu = ∂tv, ∂tu = −∂nv, where the partial derivatives are
taken with respect to polar coordinates. Applied to problem (1.1), the first of these equations suggests that
knowing w0, one can, up to an additive constant, recover v on Γ, and therefore both u0 and w0 define the
trace on Γ of the function g analytic inside Ω. However, the knowledge of an analytic function on a subset
Γ ⊂ T of positive measure completely defines this function inside the whole domain (unit disk D) [18, 26].
Of course, available data u0, w0 on Γ may not be compatible to yield the restriction of an analytic function
onto Γ. This fact illustrates ill-posedness of the problem from the complex analysis point of view. At the same
time, it leads to a natural regularization scheme that consists of finding a compatible set of data which is the
closest to the original one and whose continuation behaves well on the unaccessible part of the boundary.

The described procedure can be formalized as a best norm-constrained approximation problem in Hardy
space for the disk casted in the works [3, 6]. Pursuing this approach, we extend previously obtained results
as follows.

First of all, we generalize the method in order to allow internal pointwise constraints on the solution.
We rederive solution formula and carry out analysis of the approximation quality for this case. One practical
aspect of thismodificationmight be a possibility to effectively processmeasurements from sensors positioned
off the naturally smooth boundary by clustering these outlyingmeasurements into a fewpoints located inside
the domain. We note that here internal pointwise data do make sense due to the analytical structure of the
present framework– an advantage ofworking inHardy rather than Lebesgue spaces. The possibility of impos-
ing finite or infinite number of internal pointwise constraints on analytic function in the disk is classical [27]
and has been studied from different viewpoints (e.g. [9]).

Second, we improve the previous solution algorithm which was an iterative procedure. As before, the
solution formula is implicit for it contains a parameter to be chosen to satisfy the regularization constraint.
However, if this adjustment previously had to be done by dichotomy, we now provide an expression allowing
one to estimate this parameter directly from the regularization bound and thus avoid repetitive solution of
the problem.

Lastly, we prove stability of the regularized problemwith respect to all input data – a technical issue that
appears not to have been raised before.

The paper is organized in the following way. Section 2 provides an introduction to the theory of Hardy
spaces which are essential functional spaces in the present approach. In Section 3, we formulate the problem
in that framework, prove existence of a unique solution, obtain its implicit characterization and additionally
discuss the choice of some interpolation function used in order to prescribe desired values inside the domain.
In Section 4, we obtain specific balance relations governing the approximation rate on a given subset of the
circle and the solution growth on its complement. This sheds light on the quality of the approximate solution
depending on a choice of some auxiliary parameters. We finally introduce a novel series expansion method
for evaluation of certain characteristics governing the solution quality. Combined with a previously obtained
implicit characterization formula for theminimizer (best approximant), it yields a practical way of solving the
bounded extremal problem.We further look into sensitivity of the solution to perturbations of all input data in
Section 5 raising the stability issue and providing technical estimates. We finalize the work with Section 6 by
presenting numerical illustrations of themethod, a short discussion about the choice of technical parameters
and a suggestion of a possible computational strategy. Some concluding remarks are given in Section 7.
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2 Essential background on Hardy spaces
LetD ⊂ ℂ be the open unit disk with boundary T.

Hardy spaces H2(D), H∞(D) can be defined as classes of holomorphic functions on the disk with finite
norms

‖F‖H2 = sup
0<r<1

(
1
2π

2π

∫
0

|F(reiθ)|2 dθ)
1/2
, ‖F‖H∞ = sup

|z|<1
|F(z)|.

These are Banach spaces that enjoy plenty of remarkable properties that have been studied in detail over the
years [15, 17, 20, 27]. It is crucial that functions in Hardy spaces have boundary values defined pointwise
almost everywhere onTwith the limit existing along any non-tangential path from inside the disk. Moreover,
H2 is a Hilbert space with the inner product

⟨f, g⟩L2(T) =
1
2π

2π

∫
0

f(eiθ)g(eiθ) dθ,

and this space can be characterized as a subspace of L2(T)-functions whose Fourier coefficients of negative
index vanish. In fact, we have the decomposition L2 (T) = H2 ⊕ H̄2

0, where the orthogonal complement H̄2
0 is

a space consisting of L2(T)-functions which may only possess Fourier coefficients of strictly negative index,
that is, functions holomorphic in the exterior disk ℂ \ D̄.

Another important property ofHardy classes is the possibility to performcertain structural factorizations,
see for instance [27]. In particular, we can factor out the zeros of a Hardy function without reducing its norm:
if f ∈ H2 and f(zj) = 0, zj ∈ D, j = 1, . . . , N, then f = bgwith zero-free g ∈ H2 and the finite Blaschke product
b ∈ H∞, ‖b‖H∞ = 1 defined as

b(z) = eiϕ0
N
∏
j=1

(
z − zj
1 − z̄jz

) (2.1)

for some constant ϕ0 ∈ [0, 2π].

Any function in H2, being analytic and sufficiently regular on T, admits an integral representation in
terms of its boundary values and is thus uniquely determined by means of the Cauchy formula. However, it
is also possible to recover a function f holomorphic in D from its values on a subset of the boundary I ⊂ T
using the so-called Carleman’s formulas [1, 18]. Write T = I ∪ J, where I and J are measurable sets with the
Lebesgue measures |I| and |J|, respectively.

Proposition 2.1. Assume |I| > 0 and let Φ ∈ H∞ be any function such that |Φ| > 1 in D and |Φ| = 1 on J.
Then, f ∈ H2 can be represented from f|I as

f(z) = 1
2πi limα→∞

∫
I

f(ξ)
ξ − z [

Φ(ξ)
Φ(z)]

α
dξ, (2.2)

where the convergence is uniform on compact subsets ofD.

Remark 2.1. Using the isometry H2 → H̄2
0, f(z) Ü→ 1

z f(
1
̄z ), z ∈ D, we check that Proposition 2.1 also applies

to functions in H̄2
0. In particular, for f ∈ H2 or H̄2

0, |I| > 0, we have the implication f|I = 0 â⇒ f ≡ 0 in D
or ℂ \ D̄, respectively.

An operator A is called a Toeplitz operator onH2 if its matrix in the Fourier basis has constant elements along
all diagonals: Ak,m := ⟨Azk , zm⟩L2(T) depends only on (k − m) for k,m = 0, 1, 2, . . . .

The following spectral result for Toeplitz operators is known as Hartman–Wintner theorem. Its proof can
be found in [14, 25] and, in self-consistent manner, in [8].

Proposition 2.2. Let ξ ∈ L∞(T), T → ℝ, be a symbol defining the Toeplitz operator

Tξ : H2 → H2, F Ü→ Tξ (F) = P+(ξF).

Then, the operator spectrum is σ(Tξ ) = [ess inf ξ, ess sup ξ] ⊂ ℝ.
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Define the Toeplitz operator ϕ with symbol χJ, representing the indicator function of the set J, as

H2 → H2, F Ü→ ϕ(F) = P+(χJF), (2.3)

where we let P+ denote the orthogonal projection from L2(T) onto H2. Similarly, P− := I − P+ defines the
orthogonal projection onto H̄2

0.

Proposition 2.3. The Toeplitz operator ϕ is an injection on H2. Moreover, this result is valid if the operator
domain is extended to the whole L2(T).

Proof. By the orthogonal decomposition L2 = H2 ⊕ H̄2
0, we have χJg = P+(χJg) + P−(χJg). Now, if P+(χJg) = 0,

then χJg is an H̄2
0-function vanishing on I and hence, by Remark 2.1, must be identically zero.

We finally formulate the density results which will be essential for stating the main problem.

Proposition 2.4. Let J ⊂ T be a subset of non-full measure, that is, |I| = |T \ J| > 0. Then, the restriction
H2|J := (trH2)|J is dense in L2(J).

Proof. We argue by contradiction: assume that there is a non-zero f ∈ L2(J) orthogonal to H2|J . Then, extend-
ing it by zero on I, we denote the extended function as ̃f . We thus have ⟨ ̃f , g⟩L2(T) = 0 for all g ∈ H2 which
implies ̃f ∈ H̄2

0 and hence, by Remark 2.1, f ≡ 0.

Proposition 2.5. Assume |I| > 0, f ∈ L2(I). Let {gn}∞n=1 be a sequence of H2-functions such that

lim
n→∞

‖f − gn‖L2(I) = 0.

Then, ‖gn‖L2(J) → ∞ as n → ∞ unless f is the trace of an H2-function.

Proof. Assume that f is not the trace on I of some H2-function, but at the same time limn→∞ ‖gn‖L2(J) < ∞.
Then, by hypothesis, the sequence {gn}∞n=1 is bounded not only in L2(J) but also in H2. Since H2 is reflexive,
by the Banach–Alaoglu theorem [23], the closed unit ball in H2 is weakly compact, therefore we can extract
a subsequence {gnk } that converges weakly in H2 to some g ∈ H2. However, since gn → f in L2(I), we must
have f = g|I yielding a contradiction.

3 Approximation problem with pointwise data

3.1 Formulation of the problem

Motivated by the Cauchy problem (1.1), we are aiming to find an analytic function which is consistent with
available physical measurements. Proposition 2.4 allows a possibility for finding an analytic function with
arbitrary close correspondence to given data, but on the other hand, Proposition 2.5 implies that any approx-
imation scheme would be unstable with respect to input data which are unevitably contaminated by noise,
round-off errors, etc. To make the problem well-posed, constraint has to be added and hence this leads one
to search for a constrained best approximant of an L2-function defined on a subset of the boundary by the
trace of an H2-function. Such problems have already been investigated extensively in the half-plane setting
[22] and on the disk [3, 6, 7].

In the present work, we extend the latter results, namely, we consider the problem of finding an
H2-function which takes prescribed values {ωj}Nj=1 ∈ ℂ at interior points {zj}Nj=1 ∈ D and which best approx-
imates a given L2(I)-function on a subset of the boundary I ⊂ T while remaining close enough to another
L2(J)-function on the complementary part J = T \ I. Note that I = Γ in the notation of Section 1.

We proceed with a technical formulation of this problem. Assuming given interpolation values at dis-
tinct interior points {zj}Nj=1 ∈ D, we let ψ ∈ H2 be some fixed function satisfying the pointwise interpolation
conditions

ψ(zj) = ωj ∈ ℂ, j = 1, . . . , N. (3.1)
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Then, any interpolating function in H2 fulfilling these conditions can be written as g̃ = ψ + bg for arbitrary
g ∈ H2 with b ∈ H∞ the finite Blaschke product defined in (2.1).

Let us assume |I|, |J| > 0 and write f = f|I ∨ f|J to mean a function defined on the whole T through its
values given on I and J.

For h ∈ L2(J), M ≥ 0, let us introduce the following functional spaces:

Aψ,b := {g̃ ∈ H2 : g̃ = ψ + bg, g ∈ H2},

B
ψ,b
M,h := {g ∈ H2 : ‖ψ + bg − h‖L2(J) ≤ M}, (3.2)

C
ψ,b
M,h := {f ∈ L2(I) : f = ψ|I + bg|I , g ∈ B

ψ,b
M,h}.

We then have the inclusions
C
ψ,b
M,h ⊆ Aψ,b|I ⊆ H2|I ⊂ L2(I),

and C
ψ,b
M,h = (ψ + bBψ,b

M,h)
!!!!I ̸= 0 since, in general (for arbitrary h ∈ L2(J)), Bψ,b

M,h ̸= 0 for M > 0 as follows from
Proposition 2.4.

In this set-up, a solution to the approximation problem is

g̃0 := ψ + bg0 ∈ Aψ,b such that g0 = argmin
g∈Bψ,b

M,h

‖ψ + bg − f‖L2(I), (3.3)

i.e. a bestH2-approximant to f on I which fulfils the interpolation conditions (3.1) and does not deviatemuch
from the reference h on J: ‖g̃0 − h‖L2(J) ≤ M. In view of Proposition 2.5, the L2-constraint on J is crucial for the
problem to be well-posed whenever f ∉ Aψ,b|I (which is always the case in context of practical applications).
In other words, we assume that

g|I ̸= b̄(f − ψ), (3.4)

i.e. there is no g̃ = ψ + bg ∈ H2 whose trace on I is exactly the given function f ∈ L2(I), and at the same time
remains within the L2-distance M from h on J. This motivates the choice (3.2) for the space of admissible
solutionsBψ,b

M,h.

3.2 Bounded extremal problem

Given f ∈ L2(I), solving the analytic function approximation problem with pointwise constraints is tanta-
mount to finding a solution to the following bounded extremal problem:

min
g∈Bψ,b

M,h

‖ψ + bg − f‖L2(I). (3.5)

Existence and uniqueness of a solution to (3.5) can be reduced to what has been proved in a general
setting in [6]. Here we present a slightly different proof taking advantage of the Hilbertian setting.

Theorem 3.1. For any f ∈ L2(I), h ∈ L2(J), ψ ∈ H2, M ≥ 0 and b ∈ H∞ defined as (2.1), there exists a unique
solution to the bounded extremal problem (3.5).

Proof. By the existence of a best approximationprojection onto a non-empty closed convex subset of aHilbert
space [13], it is required to show that the space of restrictionsBψ,b

M,h|I is a closed convex subset of L
2(I). Con-

vexity is a direct consequence of the triangle inequality:

‖α(bg1 + ψ − h) + (1 − α)(bg2 + ψ − h)‖L2(J) ≤ αM + (1 − α)M = M

for any g1, g2 ∈ B
ψ,b
M,h and α ∈ [0, 1].

We will now show the closedness property. Let {gn}∞n=1 be a sequence ofB
ψ,b
M,h-functions which converges

in L2(I) to some function g: ‖g − gn‖L2(I) → 0 as n → ∞. We need to prove that g ∈ B
ψ,b
M,h.
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We note that g ∈ H2|I , since otherwise, by Proposition 2.5, ‖gn‖L2(J) → ∞ as n → ∞, which would con-
tradict the fact that gn ∈ B

ψ,b
M,h starting with some n. Therefore, ψ + bg ∈ H2 and ⟨ψ + bg, ξ⟩L2(T) = 0 for

any ξ ∈ H̄2
0, which implies that

⟨ψ + bg, ξ⟩L2(I) = ⟨(ψ + bg) ∨ 0, ξ⟩L2(T) = −⟨0 ∨ (ψ + bg), ξ⟩L2(T) = −⟨ψ + bg, ξ⟩L2(J).

From here, using the same identity for ψ + bgn, we obtain

⟨ψ + bg − h, ξ⟩L2(J) = −⟨ψ + bg, ξ⟩L2(I) − ⟨h, ξ⟩L2(J)
= − lim

n→∞
⟨ψ + bgn , ξ⟩L2(I) − ⟨h, ξ⟩L2(J)

= lim
n→∞

⟨ψ + bgn , ξ⟩L2(J) − ⟨h, ξ⟩L2(J).

Since gn ∈ B
ψ,b
M,h for all n, the Cauchy–Schwarz inequality gives

|⟨ψ + bg − h, ξ⟩L2(J)| = lim
n→∞

|⟨ψ + bgn − h, ξ⟩L2(J)| ≤ M‖ξ‖L2(J)

for any ξ ∈ H̄2
0|J . The final result is now furnished by employing the density of H̄2

0|J in L2(J) (Proposition 2.4
and Remark 2.1) and the dual characterization of the L2(J)-norm:

‖ψ + bg − h‖L2(J) = sup
ξ∈L2(J)

‖ξ‖L2(J)≤1

|⟨ψ + bg − h, ξ⟩L2(J)| = sup
ξ∈H̄2

0
‖ξ‖L2(J)≤1

|⟨ψ + bg − h, ξ⟩L2(J)| ≤ M.

A key property of the solution is that the constraint in (3.2) is necessarily saturated unless f ∈ Aψ,b|I .

Lemma 3.1. If f ∉ Aψ,b|I and g ∈ B
ψ,b
M,h solves (3.5), then ‖ψ + bg − h‖L2(J) = M.

Proof. To show this, suppose the opposite, i.e. there is g0 ∈ H2 solving (3.5) for which we have

‖ψ + bg0 − h‖L2(J) < M.

The last conditionmeans that g0 is within the interior ofB
ψ,b
M,h, and hencewe candefine g

⋆ := g0 + ϵδg ∈ B
ψ,b
M,h

for sufficiently small ϵ > 0 and δg ∈ H2, ‖δg‖H2 = 1 such that Re⟨bδg , ψ + bg0 − f⟩L2(I) < 0,where the equality
case is eliminated by (3.4). By the smallness of ϵ, the quadratic term is negligible, and thus we have

‖ψ + bg⋆ − f‖2L2(I) = ‖ψ + bg0 − f‖2L2(I) + 2ϵ Re⟨bδg , ψ + bg0 − f⟩L2(I) + ϵ2‖δg‖2L2(I)
< ‖ψ + bg0 − f‖2L2(I),

which contradicts the minimality of g0.

As an immediate consequence of saturation of the constraint, we obtain:

Corollary 3.1. The requirement f ∈ L2(I)\Aψ,b|I implies that the formulation of the problemshouldbe restricted
to the case M > 0.

Proof. If f ∈ L2(I) \Aψ,b|I and M = 0, the lemma entails that h ∈ Aψ,b|J . Then, h = ψ + bg for some g ∈ H2

and its extension to the wholeD (given, for instance, by Proposition 2.1) uniquely determines g̃ = h without
resorting to solution of the bounded extremal problem (3.5), hence independently of f .

Having established that equality holds in (3.2), we approach (3.5) as a constrained optimization problem
following a standard idea of Lagrange multipliers (e.g. [29]) and claim that for a solution g to (3.5) and for
some τ ∈ ℝ, we must necessarily have

⟨δg̃ , (g̃ − f) ∨ τ(g̃ − h)⟩L2(T) = 0 (3.6)

for any δg̃ ∈ bH2 (recall that g̃ = ψ + bg and δg̃ = bδg for δg ∈ H2) which is a condition of tangency of level
lines of the objective and constraint functionals. Condition (3.6) can be shown by the same variational argu-
ment as in the proof of Lemma 3.1: it must hold true, otherwise we would be able to improve the minimum
while still remaining in the admissible set. This motivates us to search for g ∈ H2 such that, for τ ∈ ℝ,

[(ψ + bg − f) ∨ τ(ψ + bg − h)] ∈ (bH2)⊥
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which is equivalent to
P+[b̄(ψ + bg − f) ∨ τb̄(ψ + bg − h)] = 0. (3.7)

Theorem 3.2. If f ∉ Aψ,b|I and M > 0, the solution to the bounded extremal problem (3.5) is given by

g0 = (1 + μϕ)−1P+(b̄(f − ψ) ∨ (1 + μ)b̄(h − ψ)), (3.8)

where the parameter μ > −1 is uniquely chosen such that ‖ψ + bg0 − h‖L2(J) = M.

Proof. We present here the proof for the case h ∈ H2|J, the case h ∈ L2(J) is essentially based on the density
result of Proposition 2.4 and weak compactness of the unit ball in H2, it is more technical and given in [8].

First, for simplicity, we assume that h = 0. Then, equation (3.7) can be elaborated as follows:

P+(b̄(ψ + bg)) + (τ − 1)P+(0 ∨ b̄(ψ + bg)) = P+(b̄f ∨ 0),
g + P+(b̄ψ) + (τ − 1)P+(0 ∨ b̄ψ) + (τ − 1)ϕg = P+(b̄f ∨ 0),

(1 + μϕ)g = −P+(b̄(ψ − f) ∨ (1 + μ)b̄ψ), (3.9)

where we introduced the parameter μ := τ − 1 ∈ ℝ.
The Toeplitz operator ϕ, defined as (2.3), is self-adjoint and, according to Proposition 2.2, its spectrum

is
σ(ϕ) = [ess inf χJ , ess sup χJ] = [0, 1], (3.10)

hence ‖ϕ‖ ≤ 1 and the operator (1 + μϕ) is invertible on H2 for μ > −1 allowing to claim that

g = −(1 + μϕ)−1P+(b̄(ψ − f) ∨ (1 + μ)b̄ψ). (3.11)

This generalizes the result of [3] to the case when solution needs to meet pointwise interpolation conditions.
Now, let h ̸= 0, but assume it to be the restriction to J of some H2-function.

We write f = ϱ + κ|I for κ ∈ H2 such that κ|J = h. Then, the solution to (3.5) is

g0 = argmin
g∈Bψ,b

M,h

‖ψ + bg − f‖L2(I) = argmin
g∈B̃M,0

‖ψ̃ + bg − ϱ‖L2(I),

where ψ̃ := ψ − κ and
B̃M,0 := {g ∈ H2 : ‖ψ̃ + bg‖L2(J) ≤ M}.

It is easy to see that, due to κ|J = h, we have B̃M,0 = B
ψ,b
M,h. Therefore, the already obtained results (3.9), (3.11)

apply to yield

(1 + μϕ)g0 = −P+(b̄(ψ̃ − ϱ) ∨ (1 + μ)b̄ψ̃)
= −P+(b̄(ψ − κ − ϱ) ∨ (1 + μ)b̄(ψ − κ))
= P+(b̄(f − ψ) ∨ (1 + μ)b̄(h − ψ)), (3.12)

from where (3.8) follows.

Remark 3.1. As it is mentioned in the formulation of Theorem 3.2, for g0 to be a solution to (3.5), the
Lagrange parameter μ has yet to be chosen such that g0 given by (3.8) satisfies the constraint

‖ψ + bg0 − h‖L2(J) = M,

which makes the well-posedness effective, see Proposition 2.5 and the discussion in the beginning of Sec-
tion 4. We note that the formal substitution μ = −1 in (3.12) leaves out the constraint on J and leads to the
situation g|I = b̄(f − ψ) that was ruled out initially by the requirement (3.4).

In the situationwhen f ∈ Aψ,b|I , we face an extrapolationproblemof holomorphic extension from I inside the
disk preserving interior pointwise data. In such a case, b̄(f − ψ) ∈ H2|I and Proposition 2.1 (or any another
recovery scheme from [26]) applies to construct the extension g such that g|I = b̄(f − ψ) and so ψ + bg can be
regarded as the solution to the approximation problem if ‖ψ + bg − h‖L2(J) ≤ M. Otherwise, despite f ∈ Aψ,b|I ,
the cost functional of problem (3.5) cannot be minimized to zero, in this case the solution is ψ + bg0 with g0
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8 | J. Leblond and D. Ponomarev, Harmonic functions recovery from partial data

given by (3.8).We note that the derivation of (3.8) was based solely on Lemma3.1whose proof still holds true
(by hypothesis, g0|I ̸= b̄(f − ψ) for g0 ∈ B

ψ,b
M,h). This situation, from a geometrical point of view, is nothing but

finding a projection of f ∈ Aψ,b|I onto the convex subset C
ψ,b
M,h ⊆ Aψ,b|I .

However, returning back to the realistic case where f ∈ L2(I) \Aψ,b|I , the solution to (3.5) can still be
written in an integral form in spirit of the Carleman’s formula (2.2) as givenby the following result (see also [6]
where it was stated for the case ψ ≡ 0, b ≡ 1).

Proposition 3.1. For μ ∈ (−1, 0), the solution (3.8) can be represented as

g0(z) =
1
2πi ∫
T

(
Φ(ξ)
Φ(z))

α
(b̄(f − ψ) ∨ b̄(h − ψ))(ξ) dξ

ξ − z
, z ∈ D, (3.13)

where
Φ(z) = exp{ log ρ2πi ∫

I

ξ + z
ξ − z

dξ}, α = −
log(1 + μ)
2 log ρ , ρ > 1. (3.14)

Proof. First of all, we note that the argument of the exponential in (3.14) is an analytic function whose real
part has constant boundary value log ρ supported on I as a convolutionwith the Schwarz kernel. The function
(3.14) satisfies |Φ| = ρ ∨ 1 on T and |Φ| > 1 on D and so, by the minimum modulus principle for analytic
functions, |Φ| > 1 onD due to the requirement ρ > 1.

To show the equivalence of two forms of the solution, one can start from (3.13) and arrive at (3.8) for
a suitable choice of the parameters. Indeed, since Φ ∈ H∞, (3.13) implies

Φαg0 = P+[Φα(b̄(f − ψ) ∨ b̄(h − ψ))] â⇒ P+(|Φ|2αg0) = P+(Φ̄αP+[Φα(b̄(f − ψ) ∨ b̄(h − ψ))]).

We can represent

P+[Φα(b̄(f − ψ) ∨ b̄(h − ψ))] = Φα(b̄(f − ψ) ∨ b̄(h − ψ)) − P−[Φα(b̄(f − ψ) ∨ b̄(h − ψ))]

with P− being the anti-analytic projection defined in Section 2. Since

⟨Φ̄αP−[Φα(b̄(f − ψ) ∨ b̄(h − ψ))], u⟩L2(T) = ⟨P−[Φα(b̄(f − ψ) ∨ b̄(h − ψ))], Φαu⟩L2(T) = 0

for any u ∈ H2, it follows that

P+(Φ̄αP−[Φα(b̄(f − ψ) ∨ b̄(h − ψ))]) = 0

and so we deduce
P+(|Φ|2αg0) = P+[|Φ|2α(b̄(f − ψ) ∨ b̄(h − ψ))].

Given ρ > 1, choose α > 0 such that ρ2α = 1
1+μ (this restricts the range μ > −1 to μ ∈ (−1, 0)). Then, we have

|Φ|2α|I = 1
1+μ , |Φ|2α|J = 1, and hence

P+(
1

1 + μ
g0 ∨ g0) = P+(

b̄
1 + μ

(f − ψ) ∨ b̄(h − ψ))

â⇒ P+(g0 ∨ g0) + μP+(0 ∨ g0) = P+(b̄(f − ψ) ∨ (1 + μ)b̄(h − ψ)),

which directly furnishes (3.8).

3.3 Choice of the interpolation function

Before we proceed with approximation estimates, it is worth discussing the choice of interpolant ψ which up
to this point was any H2-function satisfying the interpolation conditions (3.1). It may look tempting to take
advantage of this arbitrariness of the interpolant to improve the solution. However, even though ψ affects the
minimizer of the bounded extremal problem (3.5), the choice of the interpolant does not alter the solution to
the approximation problem (3.3), i.e. the combination g̃0 = ψ + bg0. This result is not surprising at all from
physical point of view since ψ is an auxiliary tool which should not affect the solution whose dependence
must eventually boil down to given data (measurement related quantities) only: {zk}Nk=1, {ωk}

N
k=1, f and h.

More precisely, we have the following lemma.
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Lemma 3.2. Given arbitrary ψ1, ψ2 ∈ H2 satisfying (3.1), we have ψ1 + bg0(ψ1) = ψ2 + bg0(ψ2).

Proof. First of all, we note that the dependence g0(ψ) is not only due to explicit appearance of ψ in (3.8), but
also because the Lagrange parameter μ, in general, has to be readjusted according to ψ, that is, μ = μ(ψ) so
that

‖ψk + bg0(ψk) − h‖2L2(J) = M
2, k = 1, 2, (3.15)

wherewemean g0(ψ) = g0(ψ, μ(ψ)). Let us denote δψ := ψ2−ψ1, δμ := μ(ψ2)−μ(ψ1), δg := g0(ψ2)−g0(ψ1).
Taking difference of both equations (3.15), we have

⟨δψ + bδg , ψ1 + bg0(ψ1) − h⟩L2(J) + ⟨ψ2 + bg0(ψ2) − h, δψ + bδg⟩L2(J) = 0
â⇒ Re⟨b̄δψ + δg , b̄ψ2 + g0(ψ2) − b̄h⟩L2(J) = ‖δψ + bδg‖2L2(J). (3.16)

On the other hand, the optimality condition (3.6) implies that, for any ξ ∈ H2,

⟨b̄ψk + g0(ψk) − b̄f, ξ⟩L2(I) = −(1 + μ(ψk))⟨b̄ψk + g0(ψk) − b̄h, ξ⟩L2(J), k = 1, 2,

and therefore

⟨b̄δψ + δg , ξ⟩L2(I) = −(1 + μ(ψ1))⟨b̄δψ + δg , ξ⟩L2(J) − δμ⟨b̄ψ2 + g0(ψ2) − b̄h, ξ⟩L2(J). (3.17)

Since δψ ∈ H2, due to (3.1), it is zero at each zj, j = 1, . . . , N, andhence factorizes as δψ = bη for some η ∈ H2.
This allows us to take ξ = b̄δψ + δg ∈ H2 in (3.17) to yield

‖η + δg‖2L2(I) = −(1 + μ(ψ1))‖η + δg‖2L2(J) − δμ⟨b̄ψ2 + g0(ψ2) − b̄h, η + δg⟩L2(J).

Note that the inner product term on the right-hand side is real-valued since the others are, and so employing
(3.16), we arrive at

‖η + δg‖2L2(I) + (1 + μ(ψ1))‖η + δg‖2L2(J) = −
1
2 δμ‖η + δg‖2L2(J).

Suppose δμ ≥ 0, now since μ > −1, the positivity of the left-hand side entails that δμ = 0. Now, if δμ ≤ 0,
interchanging ψ1 and ψ2, we would get

‖η − δg‖2L2(I) + (1 + μ(ψ2))‖η − δg‖2L2(J) =
1
2 δμ‖η − δg‖2L2(J),

and so again, since the right-hand side is now negative, it must be that δμ = 0 leading to

‖δψ + bδg‖2L2(T) = ‖η + δg‖2L2(I) + ‖η + δg‖2L2(J) = 0,

which finishes the proof.

Even though we cannot quantitatively improve the approximation, some particular choice of the interpolant
still might be more beneficial for analytical purposes of the solution formula.

Let us consider

ψ(z) =
N
∑
k=1

ψkK(zk , z) with K(zk , z) :=
1

1 − z̄kz
, z ∈ D. (3.18)

We refer to [8, 28] where more details on this interpolant can be found. In particular, the constants can al-
ways be uniquely determined from the requirement (3.1), and it is remarkable that ⟨K(zk , z), bu⟩L2(T) = 0,
k = 1, . . . , N, for any u ∈ H2. The latter is due to the fact that the function K( ⋅ , ⋅ ) is the reproducing kernel
for H2, meaning that, for any u ∈ H2, z0 ∈ D, point evaluation is given by the inner product

u(z0) = ⟨u,K(z0, ⋅ )⟩L2(T).

With this choice of the interpolant, we have P+(b̄ψ) = 0, and thus the solution (3.8) takes the form

g0 = (1 + μϕ)−1[P+(b̄(f ∨ h)) + μP+(0 ∨ b̄(h − ψ))]. (3.19)

We therefore conclude with

Corollary 3.2. Independently of the choice of ψ ∈ H2 fulfilling (3.1), the solution to the approximation problem
(3.3) is given by

g̃0 = ψ + b(1 + μϕ)−1[P+(b̄(f ∨ h)) + μP+(0 ∨ b̄(h − ψ))]. (3.20)
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4 Approximation estimates
We would like to stress again that formulas (3.8), (3.13) and (3.19) furnish a solution only in an implicit
form with the Lagrange parameter μ still to be chosen such that the solution satisfies the equality constraint
in (3.2). As it was mentioned in Remark 3.1, the constraint inB

ψ,b
M,h does not enter the solution characteriza-

tion (3.12) when μ = −1, so as μ ↘ −1 we expect perfect approximation of the given f ∈ L2(I) \Aψ,b|I at the
expense of uncontrolled growth of the quantity

M0(μ) := ‖ψ + bg0(μ) − h‖L2(J) (4.1)

according to Propositions 2.4 and 2.5. This is not surprising since the inclusion B
ψ,b
M1 ,h ⊂ B

ψ,b
M2 ,h whenever

M1 < M2 implies that the minimum of the cost functional in equation (3.5) sought over Bψ,b
M1 ,h is bigger than

that for Bψ,b
M2 ,h. For devising a feasible for applications solution, a suitable trade-off between values of μ

governing the quality of approximation on I and admissible boundsM has to be found.Wedefine the approxi-
mation error as

e(μ) := ‖ψ + bg0(μ) − f‖2L2(I), (4.2)
and proceed with establishing a connection between e, M0 and the Lagrange parameter μ.

The essential result is contained in the following lemma.

Lemma 4.1. For μ > −1, the following monotonicity properties hold:

de
dμ

> 0,
dM2

0
dμ

< 0. (4.3)

Moreover, we have
de
dμ

= −(μ + 1)
dM2

0
dμ

. (4.4)

Proof. From (3.8), because ϕ and (1 + μϕ)−1 commute, derivation yields
dg0
dμ

= −(1 + μϕ)−2ϕP+(b̄(f − ψ) ∨ (1 + μ)b̄(h − ψ)) + (1 + μϕ)−1P+(0 ∨ b̄(h − ψ))

â⇒
dg0
dμ

= −(1 + μϕ)−1[ϕg0 + P+(0 ∨ b̄(ψ − h))], (4.5)

and thus
dM2

0
dμ

= 2Re⟨b dg0dμ , ψ + bg0 − h⟩
L2(J)

= −2Re⟨(1 + μϕ)−1[ϕg0 + P+(0 ∨ b̄(ψ − h))], ϕg0 + P+(0 ∨ b̄(ψ − h))⟩L2(T) < 0. (4.6)

The inequality here is due to the spectral result (3.10) implying

Re⟨(1 + μϕ)−1ξ, ξ⟩L2(T) = ⟨(1 + μϕ)−1ξ, ξ⟩L2(T) ≥ 0

for any ξ ∈ H2 and μ > −1whereas the equality in (4.6) would be possible, according to Proposition 2.3, only
when g0|J = b̄(h − ψ), that is, M0 = 0, the case that was eliminated by Corollary 3.1.

Now, for any β ∈ ℝ, making use of (4.5) again, we compute
de
dμ

= 2Re⟨dg0dμ , b̄(ψ − f) + g0⟩
L2(I)

= −2Re⟨(1 + μϕ)−1[ϕg0 + P+(0 ∨ b̄(ψ − h))], (b̄(ψ − f) + g0) ∨ 0⟩L2(T)

= −β
dM2

0
dμ

− 2Re B,

with B given by

⟨(1 + μϕ)−1[ϕg0 + P+(0 ∨ b̄(ψ − h))], βϕg0 + βP+[0 ∨ b̄(ψ − h)] + (b̄(ψ − f) + g0) ∨ 0⟩L2(T)
= ⟨(1 + μϕ)−1[ϕg0 + P+(0 ∨ b̄(ψ − h))], (b̄(ψ − f) + g0) ∨ β[b̄(ψ − h) + g0]⟩L2(T)
= ⟨b(1 + μϕ)−1[ϕg0 + P+(0 ∨ b̄(ψ − h))], (ψ + bg0 − f) ∨ β(ψ + bg0 − h)⟩L2(T),
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where we suppressed the P+ operator on the right part of the inner product in the second line due to the fact
that its left part belongs to H2.

The choice β = μ + 1 = τ entails Re B = 0 due to (3.6), and we thus obtain (4.4). Since μ + 1 > 0, equa-
tion (4.4) combines with (4.6) to furnish the second inequality in (4.3).

In particular, equation (4.4) encodes how the decay of the approximation error on I is accompanied by the
approximant g̃0 = ψ + bg0 departing further away from the given h on J as μ ↘ −1. Increasing behavior of
M0(μ) near μ = −1 is subject to a rough square-integrability result analogous to [3, Proposition 5].

Proposition 4.1. The deviation M0 of the approximant g̃0 from h on J has moderate growth as μ ↘ −1 so that,
for any −1 < μ0 < ∞,

μ0

∫
−1

M2
0(μ) dμ < ∞. (4.7)

Proof. Integration of (4.4) by parts from μ to μ0 yields

e(μ0) − e(μ) = (μ + 1)M2
0(μ) − (μ0 + 1)M2

0(μ0) +
μ0

∫
μ

M2
0(τ) dτ. (4.8)

As it was already mentioned in the beginning of the section, Proposition 2.4 implies that the cost functional
goes to 0 when μ decays to −1:

e(μ) ↘ 0 as μ ↘ −1. (4.9)

We are now going to estimate the behavior of the product (μ + 1)M2
0(μ). First of all, since the constraint is

saturated (Lemma 3.1), condition (3.7) implies that

⟨f − ψ − bg0, bg0⟩L2(I) = (1 + μ)⟨h − ψ − bg0, −bg0⟩L2(J)
= (1 + μ)M2

0 − (1 + μ)⟨h − ψ − bg0, h − ψ⟩L2(J),

and therefore

e1/2(μ)‖g0‖L2(I) ≥ |⟨f − ψ − bg0, bg0⟩L2(I)| ≥ (1 + μ)M0(M0 − ‖h − ψ‖L2(J)).

Now, sinceM0 ↗ ∞ as μ ↘ −1 (because of (4.9) and Proposition 2.4), the first term is dominant, and thus the
right-hand side remains positive. Then, because of (4.9) and finiteness of ‖g0‖L2(I) (by the triangle inequality,
‖g0‖L2(I) ≤ e1/2(μ) + ‖ψ − f‖L2(I)), we conclude that

(μ + 1)M2
0 ↘ 0 as μ ↘ −1,

which allows us to deduce (4.7) from (4.8).

It turns out that we can obtain explicit expressions for e(μ) and M0(μ). The latter would yield the unique
value of the parameter μ by the inverse function theorem applicable due to the monotonicity result (4.6).

It is convenient to introduce the following auxiliary quantity:

ξ(μ) := ϕg0(μ) + P+(0 ∨ b̄(ψ − h))

that enters equation (4.5). The main results will be obtained in terms of

ξ0 := ξ(0) = ϕ(P+(b̄(f − ψ) ∨ b̄(h − ψ))) − P+(0 ∨ b̄(h − ψ)). (4.10)

Theorem 4.1. For |μ| < 1, the quantities (4.1)–(4.2) can be computed as

M2
0(μ) = M

2
0(0) −

∞
∑
k=0

(−1)k(k + 2)F(k)μk+1 (4.11)

and
e(μ) = e(0) + 2

∞
∑
k=0

(−1)kF(k)μk+1 +
∞
∑
k=1

(−1)kk[F(k) − F(k − 1)]μk+1, (4.12)

where F(k) := ⟨ϕkξ0, ξ0⟩L2(T), k ∈ ℕ+.
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Proof. Consider, for k ∈ ℕ+, μ > −1,

Ak(μ) := ⟨(1 + μϕ)−kϕk−1ξ(μ), ξ(μ)⟩L2(T).

Since ξ �(μ) = ϕ dg0
dμ = −(1 + μϕ)−1ϕξ(μ) (according to (4.5)), it follows that

A�
k(μ) = −k⟨(1 + μϕ)−k−1ϕkξ(μ), ξ(μ)⟩L2(T) − ⟨(1 + μϕ)−k−1ϕkξ(μ), ξ(μ)⟩L2(T)

− ⟨(1 + μϕ)−kϕk−1ξ(μ), (1 + μϕ)−1ϕξ(μ)⟩L2(T),

and we thus arrive at the infinite-dimensional linear dynamical system

{
A�
k(μ) = −(k + 2)Ak+1(μ),
Ak(0) = ⟨ϕk−1ξ0, ξ0⟩L2 =: F(k − 1),

k ∈ ℕ+. (4.13)

Introduce the matrixM whose powers are upper-diagonal with evident structure

M = (

0 −3 0 0 . . .
0 0 −4 0 . . .
0 0 0 −5 . . .
0 0 0 0 . . .
. . . . . . . . . . . . . . .

) , M2 = (

0 0 (−3)(−4) 0 . . .
0 0 0 (−4)(−5) . . .
0 0 0 0 . . .
0 0 0 0 . . .
. . . . . . . . . . . . . . .

) , . . . ,

which makes the matrix eM easily computable. Then, due to such a structure, system (4.13) is readily solv-
able, but of particular interest is the first component of the solution vector

A1(μ) =
∞
∑
k=1

[eMμ]1,kF(k − 1) =
∞
∑
k=0

(−1)k (k + 2)!
2

μk

k! F(k),

where the series converges for |μ| < 1 since F(k) is bounded by ‖ξ0‖2H2 = A1(0) = F(0), as the Toeplitz operator
ϕ is a contraction: F(k) slowly decays to zero with k (see also plots and discussion at the end of Section 6).

On the other hand, observe that, due to (4.6),

A1(μ) = −
1
2
dM2

0
dμ

and thus
dM2

0
dμ

= −
∞
∑
k=0

(−1)k(k + 1)(k + 2)μkF(k). (4.14)

Finally, termwise integration of (4.14) and use of (4.4) followed by rearrangement of terms furnish the
results (4.11)–(4.12).

Remark 4.1. Note that when ψ ≡ 0, h ≡ 0, it is seen that (4.14) can be obtained directly from (3.8) and (4.6)
which now reads

dM2
0

dμ
= −2Re⟨(1 + μϕ)−3ϕ2P+(b̄f ∨ 0), P+(b̄f ∨ 0)⟩L2(T).

Indeed, the result follows since a Neumann series defining an analytic function for |μ| < 1 is differentiable:

(1 + μϕ)−1 =
∞
∑
k=0

(−1)kμkϕk â⇒ (1 + μϕ)−3 =
1
2

∞
∑
k=0

(−1)k(k + 1)(k + 2)μkϕk .

5 Stability analysis
The issue to be discussed here is linear stability of the solution (3.3) with respect to all the physical com-
ponents that the expression (3.8) involves explicitly and implicitly. In practice, functions f , h are typically
obtained by further interpolating discrete boundary data and hencemay vary depending on the interpolation
method, measurement positions {zj}Nj=1 are usually known with a small error and pointwise data {ωj}Nj=1 are

Unauthenticated
Download Date | 4/19/16 9:34 AM



J. Leblond and D. Ponomarev, Harmonic functions recovery from partial data | 13

necessarily subject to a certain noise. Therefore, we assume that the boundary data f , h are slightly perturbed
by δf ∈ L2(I), δh ∈ L2(J) and internal data {ωj}Nj=1 withmeasurement positions {zj}Nj=1 by complex vectors δω,
δz ∈ ℂN , respectively. Varying one of the quantities while the others are kept fixed, we are going to estimate
separately the linear effects of such perturbations on the solution g̃0 = ψ + bg0 given by (3.3), denoting the
induced deviations as δg̃.

Proposition 5.1. For μ > −1, f ∈ L2(I) \Aψ,b|I , h ∈ L2(J), and small enough data perturbations δf ∈ L2(I),
δh ∈ L2(J), δω, δz ∈ ℂN , the following estimates hold:

(1) ‖δg̃‖H2 ≤ m1(1 +
m1M2

m0‖ξ‖2H2

)‖δf ‖L2(I),

(2) ‖δg̃‖H2 ≤ [(1 + m1(1 + μ))(1 +
m1M2

m0‖ξ‖2H2

) − 1]‖δh‖L2(J),

(3) ‖δg̃‖H2 ≤ (1 + |μ|m1)(1 +
m1M2

m0‖ξ‖2H2

) max
j=1,...,N

"""""""""

N
∏
k=1
k ̸=j

z − zk
zj − zk

"""""""""H2
‖δω‖l1 ,

(4) ‖δg̃‖H2 ≤ (1 +
m1M2

m0‖ξ‖2H2

)(C(1)μ ‖δb‖H∞ + C(2)μ ‖δψ‖H2 ),

where

ξ := P+(0 ∨ (g0 + b̄(ψ − h))), m0 := min{(1 + μ)−1, 1}, m1 := max{(1 + μ)−1, 1}, (5.1)

C(1)μ := m1(‖f ∨ h‖L2(T) + |μ|‖h − ψ‖L2(J)), C(2)μ := 1 + |μ|m1,

and

‖δb‖H∞ ≤ 2 max
j=1,...,N

‖(z − zj)−1‖H∞‖δz‖l1 ,

‖δψ‖H2 ≤ 2 max
j=1,...,N

|ωj| max
j=1,...,N

"""""""""

N
∏
m=1
m ̸=j

(z − zm)
"""""""""H2

max
j=1,...,N

N
∑
k=1
k ̸=j

|zj − zk|−1( min
j=1,...,N

N
∏
k=1
k ̸=j

|zj − zk|)
−1
‖δz‖l1 .

Proof. When the quantities entering the solution (3.8) vary, the overall variation of the solution δg will consist
of parts δg0 entering the solution formula explicitly as well as those coming from the change of the norm of
g0 on J which leads to readjustment δμ of the Lagrange parameter so that the quantity

M2
0(μ) = ‖ψ + bg0(μ) − h‖2L2(J)

remains equal to the same given valueM2. For the sake of brevity, we are going to use the notations ξ ,m0 and
m1 introduced in (5.1) to denote certain quantities entering common estimates. The spectral bounds (3.10)
for μ > −1 imply

σ(1 + μϕ) ≥ min{1 + μ, 1}, σ(1 + μϕ) ≤ max{1 + μ, 1}
â⇒ ‖(1 + μϕ)−1‖ ≤ max{(1 + μ)−1, 1}, ‖(1 + μϕ)−1‖ ≥ min{(1 + μ)−1, 1},

and so, in particular,
Re⟨(1 + μϕ)−1ξ, ξ⟩L2(T) ≥ m0‖ξ‖2H2 .

Then, the connectionbetween the change δM2 ofM2
0(μ) and δμ canbe established from the strictmonotonicity

(4.6) of M0(μ) which allows the following estimate by inversion:

δμ =
δM2

(M2
0(μ))�

= −
δM2

2Re⟨(1 + μϕ)−1ξ, ξ⟩L2(T)
â⇒ |δμ| ≤

|δM2 |
2m0‖ξ‖2H2

. (5.2)

Note that the bound on the right-hand side is finite due to the fact that ‖ξ‖H2 > 0 which holds unless
M0(μ) = 0, the situation that was initially ruled out by Corollary 3.1. Discussion on an a priori estimate
of ‖ξ‖H2 will be given in Remark 5.1.

Following this strategy, we embark on consecutive proof of the results (1)–(4).
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Result (1). This is the simplest case, the variation of M2
0(μ) is induced only by change of g0. Namely,

δM2 = 2Re⟨ψ + bg0(μ) − h, bδg0 (μ)⟩L2(J), (5.3)

where
δg0 = (1 + μϕ)−1P+(b̄δf ∨ 0). (5.4)

Application of the Cauchy–Schwarz inequality to (5.3) yields

|δM2 | ≤ 2M0(μ)‖(1 + μϕ)−1‖‖P+(b̄δf ∨ 0)‖L2(T) ≤ 2M0(μ)m1‖δf ‖L2(I)

and hence, by (5.2),
|δμ| ≤

m1M0(μ)
m0‖ξ‖2H2

‖δf ‖L2(I).

Now since δg̃ = bδg, due to (4.5), we have

δg̃ = bδg0 − b(1 + μϕ)−1P+(0 ∨ (g0 + b̄(ψ − h)))δμ , (5.5)

from where using (5.4) we deduce inequality (1).

Result (2). This is totally analogous to the previous result except that now we have

δM2 = 2Re⟨ψ + bg0(μ) − h, bδg0 (μ) − δh⟩L2(J)

with
δg0 = (1 + μϕ)−1P+(0 ∨ (1 + μ)b̄δh).

Therefore,

|δM2 | ≤ 2M0(μ)[1 + (1 + μ)m1]‖δh‖L2(J) â⇒ |δμ| ≤
M0(μ)[1 + (1 + μ)m1]

m0‖ξ‖2H2

‖δh‖L2(J).

Feeding this in relation (5.5), which still holds in this case, gives

‖δg̃‖H2 ≤ m1(1 + μ +
[1 + (1 + μ)m1]M2

m0‖ξ‖2H2

)‖δh‖L2(J),

that is exactly a rewording of estimate (2).

Results (3)–(4). The proofs are routine which differ from (2) only technically and can be found in detail
in [8].

Remark 5.1. The quantity ξ introduced in (5.1) enters the results (1)–(4) of Proposition 5.1 and should be
bounded away from zero. This fact, however, follows from Proposition 2.3 and Corollary 3.1. Moreover, the
norm of ξ can be a priori estimated as

‖ξ‖H2 ≥
1
|μ|

(M − ‖ψ − h + bP+(b̄(f ∨ h))‖L2(J)) (5.6)

by applying the triangle inequality for L2(J)-norm of the quantity

ψ + bg0 − h = ψ − h + bP+(b̄(f ∨ h)) + μbP+(0 ∨ (b̄(h − ψ) − g0)),

which is a consequence of (3.12). Of course, estimate (5.6) is useful only under assumption

‖ψ − h + bP+(b̄(f ∨ h))‖L2(J) < M, (5.7)

but we do not include it in the formulation of Proposition 5.1, since this inequality can be achieved without
imposing any restriction on given boundary data f and h or increasing the bound M: since, according to
Lemma 3.2, the choice of ψ does not affect the solution g̃0 whose stability is investigated, one can consider
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another instance of bounded extremal problem, now formulated for ψ ∈ H2 meeting pointwise constraints
(3.1) and approximating h − bP+(b̄(f ∨ h)) ∈ L2(J) on J sufficiently closely (with precision M) with a finite
bound on I without any additional information (meaning that for such a problem roles I and J are swapped
and h = 0). To be more precise, given arbitrary ψ0 ∈ H2 satisfying pointwise interpolation conditions (3.1)
(for instance, one can use (3.18)), we represent ψ = ψ0 + bΨ and thus search for an approximant Ψ ∈ H2 to
“f” = b̄(h − ψ0) − P+(b̄(f ∨ h)) ∈ L2(J) such that ‖Ψ‖L2(I) = M̃ for arbitrary M̃ ∈ (0,∞). We also note that in
the case of reduction to the previously considered problemwith no pointwise data imposed ([3, 6]), i.e. when
ψ ≡ 0 and b ≡ 1, one does not have flexibility of varying the interpolant. However, the stability estimates still
persist in the region of interest (that is, for −1 < μ < 0) since condition (5.7) is fulfilled as long as μ < 0 due
to (3.8) evaluated at μ = 0 and (4.3).

Remark 5.2. Results (3)–(4) technically show stability in terms of finite pointwise data sets {ωj}Nj=1, {zj}
N
j=1

in l1-norm. However, by the equivalence of norms in finite dimensions, the same results, but with different
bounds, also hold for lp-norms, for any p ∈ ℕ+ and p = ∞.

6 Numerical illustrations and algorithmic aspects
In the present section we would like to illustrate numerically the efficiency of our series expansion method.

6.1 Numerical set-up

First of all, without loss of generality, choose J = {eiθ : θ ∈ [−θ0, θ0]} for some fixed θ0 ∈ (0, 2π). In order to
invert the Toeplitz operator in (3.8) in a computationally efficientway,weproject equation (3.12) onto afinite-
dimensional (truncated) Fourier basis {zk−1}Qk=1 for large enough Q ∈ ℕ+ and look for approximate solution
in the form

g(z) =
Q
∑
k=1

gkzk−1. (6.1)

Introducing, for m, k ∈ {1, . . . , Q},

Ak,m :=
{
{
{

sin(m−k)θ0
π(m−k) , m ̸= k,

θ0
π , m = k,

A := [Ak,m]Qk,m=1, (6.2)

sk := ⟨(b̄(f − ψ) ∨ (1 + μ)b̄(h − ψ)), ei(k−1)θ⟩L2(0,2π), s := [sk]Qk=1,

the projection equation

⟨(1 + μϕ)g − P+(b̄(f − ψ) ∨ (1 + μ)b̄(h − ψ)), zk−1⟩L2(T) = 0

becomes the vector equation (if we employ 1 to denote the identity Q × Q matrix)

(1 + μA)g = s, g := [gk]Qk=1

with a real symmetric Toeplitz matrix (1 + μA) which is computationally cheap to invert: depending on the
algorithm, asymptotic complexity of inversion may be as low as O(Q log2 Q) (for instance, see [12]).

Now, in order to numerically demonstrate the monotonicity results (4.3) for e andM0 with respect to the
parameter μ and to compare the behavior with that of series expansions (4.11)–(4.12), we run simulation for
the following set of data. We choose N = 5, θ0 = π

3 , and

f(θ) = f0(θ) +
0.5

exp(iθ) − 0.4 − 0.3i , f0(θ) := exp(5iθ) + exp(2iθ) + 1 ∈ Aψ,b

(obviously, f ∈ L2(I) does not extend inside the disk as an H2-function). Further, f0 is the restriction of the
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z ω

0.5 + 0.4i 0.9852 + 0.3752i
−0.3 + 0.3i 1.0097 − 0.1897i
0.2 + 0.6i 0.7811 + 0.2362i
0.2 − 0.5i 0.8328 − 0.1852i
0.8 − 0.1i 1.9069 − 0.3584i

Table 1. Interior pointwise data.

function z5 + z2 + 1 satisfying pointwise interpolation conditions (3.1) for points {zj}5j=1 and values {ωj}5j=1
chosen as given in Table 1. We also take h ∈ L2(J) as

h(θ) = 1
exp(iθ) − 0.5i .

Based on the points {zj}5j=1, we construct the Blaschke product according to (2.1) with the choice of constant
ϕ0 = 0 (obviously, final physical results should not depend on a choice of this auxiliary parameter which is
also clear from the solution formula (3.20)). The interpolant ψ was chosen as (3.18). The series expansions
(4.11)–(4.12) are straightforward to evaluate numerically since F(k) involves the quantity ξ0 given by (4.10).
There, the projections P+ are computed by performing non-negative-power expansions as (6.1) whereas ϕk is
simply the iterativemultiplication of the first Q Fourier coefficients of ξ0 by the Toeplitz operatormatrix (6.2).
Such iterations are extremely fast to compute once the matrix A is diagonalized.

In Figure 1, we investigate the change of deviation of the series expansion from the solution computed
numerically (which is taken as a reference in this case, see the discussion in the next subsection) as more
terms are taken into account in the expansions.
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Figure 1. Relative approximation error on I (left) and relative discrepancy error on J (right).

6.2 Suggested computational algorithm

Even though Figure 1 shows good accuracy of approximation e(μ) and M2
0(μ) from the series expansions

(4.11)–(4.12), it is clear, by the nature of such expansions, that the convergence slows down as μ gets closer
to −1, and hence the number of terms in the series should be increased dramatically. Nevertheless, as it
was mentioned, the quantities F(k) are very cheap to compute. It remains only to estimate S, that is, the
number of terms in the series for the accurate approximation of e(μ) and M2

0(μ), but it suffices to perform
such a calibration only once, namely, for the lowest value of μ in the computational range. This suggests one
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of possible computational strategies that consists of the following steps:
(1) Decide on the lowest value of the Lagrange parameter μ0 by checking the approximation rate computed

from solving system (6.1). The quantity e(μ0) will then be the best approximation rate on I.
(2) Determine the number of terms S by comparing the approximation rate with that evaluated from the

expansion (4.12) for e(μ0).
(3) Fix S, precompute the values F(k), k = 1, . . . , S. Vary the parameter μ and evaluate the approximation

and blow-up rates from the expansions (4.11)–(4.12) in order to find a suitable trade-off.

7 Conclusions
Motivated by solving an overdetermined Cauchy problem for the Laplace equation, we have introduced and
solved a new bounded extremal problem. It extends the one of best norm-constrained approximation of
a given function on a subset of the circle by the trace of an H2-function [3, 6] to the case where additional
pointwise constraints are imposed inside the unit disk. Such an approach makes it possible to take into
account outlying measurements rather than discarding them when constructing the interpolation functions
u0, ω0 or otherwise artificially modifying the boundary of the domain into a less regular one.

While studying this bounded extremal problem, we obtained new results which also apply to the orig-
inal problem without pointwise constraints, that would be a particular case with b = 1, ψ = 0 in (3.3). The
main new result is a method of direct evaluation of the approximation characteristics in terms of a Lagrange
parameter.With an extra argument, themethod can be used to obtain the asymptotic estimates for quantities
governing the approximation quality that complement those in [5]. In this direction, some technical estimates
are available in [8]. More formal and general results were obtained and might be published in a companion
paper focussingmore on function-theoretical rather than practical aspects of the problemwhere also infinite
number of interior pointwise constraints would be considered.

The new series expansion method was numerically demonstrated to be very efficient especially beyond
the asymptotic regime. It thusmakes redundant solvingmultiple instances of the bounded extremal problem
iteratively in order to find the Lagrange parameter value corresponding to a suitable trade-off between the
approximation rate on the given boundary subset and the solution growth on its complement.

We also performed a number of linear estimates thereby filling a gap of stability analysis for bounded ex-
tremal problems. Even without presence of pointwise data, the only available result so far, to our knowledge,
was aproof of continuity of the solutionwith respect to approximated functionwithout additional data (h = 0;
see [11]).

The suggestedmethodbeing essentially iteration-free can yield a further iterative computational strategy.
One can think of restarting the procedure taking the computed solution as a new reference function h and
a reduced value of M.

Acknowledgment: The authors would like to thank Laurent Baratchart for suggesting a valuable possibility
of incorporating pointwise data and his contribution to the proof of Theorem 3.1.
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