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Stable Extrapolation of Field Produced by
Volumetric Magnetizations

Juliette Leblond, Mubasharah Khalid Omer and Dmitry Ponomarev

Abstract In the particular setup of the planar scanning Superconducting Quantum
Interference Device (SQUID), the vertical component of the magnetic field pro-
duced by a magnetized sample is measured. Recovering the sample’s internal mag-
netization from this measured data, an inverse problem that is central in the field of
paleomagnetism, is a severely ill-posed process. Moreover, standard recovery meth-
ods are further hindered by limited measurements and the noise therein. To address
these issues, we develop a method to simultaneously extrapolate and denoise the
field data, thereby solving a preliminary inverse problem for an auxiliary function
of the magnetization. The proposed approach is based on a regularization frame-
work that exploits an explicit field-magnetization relation. To encode the harmonic
structure of the problem, we construct a set of basis functions derived from spheri-
cal harmonics via the Kelvin transform. The method is applicable to both volumetric
and planar magnetization distributions.

Key words: Inverse problems; measurement extrapolation/extension; paleomag-
netism; regularization.
MSC2020: 31B20; 35J05; 35R25; 35R30; 41A29; 41A30; 42B37; 47A52.

1.1 Introduction

Deducing the magnetization of geological samples holds significant importance in
the field of paleomagnetism. In the particular setup we consider, the vertical compo-
nent of the magnetic field above a thin rock sample is measured using a SQUID mi-
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croscope, on a limited, planar region. However, recovering the magnetization from
these measurements is an ill-posed inverse problem, in particular, due to the non-
uniqueness of the solution [1]. Various methods of estimation of the magnetization
distribution could be applied depending on specific assumptions, such as unidirec-
tionality, sparsity, or smoothness [2, 3], yet, across these techniques, a significant
challenge arises due to measurements’ limited area and noise pollution. The result-
ing instability can be narrowed, for example, by extending the measured field data
through extrapolation techniques [4]. Moreover, asymptotic formulas allow recov-
ery of the net magnetization moment from field measurements on a large planar area,
with accuracy improving as the measurement size increases [5], further motivating
extrapolation of measured field data.

By shifting the objective from full magnetization recovery to magnetic field ex-
trapolation, we target a problem that is less ill-posed; in the absence of noise, the
extrapolated field exists and is unique [4]. Still, small perturbations in the data may
produce large deviations in the extrapolation, and although a noise-free data-set
gives a unique extension, real data contain noise. Regularization is thus required
to stabilize the extrapolation, and acts as a denoising mechanism within the mea-
surement region. Consequently, the aim of the present work is to extrapolate the
measured field to a larger planar domain beyond the measurement area, while si-
multaneously denoising it within the measurement region.

Using the field-source relations established in Section 1.2, Section 1.3 describes
an approach to the field extrapolation issue as a constrained least-squares problem
for a function of the magnetization. Section 1.4 presents a projection-based solution
method, develops a basis for its implementation via the Kelvin transform of spher-
ical harmonics, and introduces an alternative basis for performance comparison.
Numerical results are presented in Section 1.5.

1.2 Magnetization and induced magnetic field

•
t⃗ M⃗(⃗t )

Sℓ

x3

x2

x1

h
Q

U
•x

B⃗(x) =

B1(x)
B2(x)
B3(x)



Fig. 1.1 Schematic description of the geometrical setting and notations.
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We describe the SQUID microscope setup (schematized in Fig. 1.1), that measures
the vertical component of the magnetic field B3 on a horizontal planar region Q⊂R2

at height h > 0, in the upper half-space H = {⃗x = (x1,x2,x3)
T ∈ R3 : x3 > 0}. The

magnetization M⃗ = (M1,M2,M3)
T ∈ (L2(R3))3 is supported in the compact domain

S = [−s,s]2 × [−ℓ,0]⊂R3 with s, ℓ > 0. We introduce a larger region U ⊆R2, with
U ⊃ Q, to which measurements of B3 will be extended. We work in the complex
Hilbert spaces L2(R2) and L2(Q), equipped with the standard inner products:

⟨ f ,g⟩L2(R2) =
∫∫

R2
f (x)g(x)dx and ⟨ f ,g⟩L2(Q) =

∫∫
Q

f (x)g(x)dx.

Their associated norms will be denoted by ∥ f∥L2(R2) and ∥ f∥L2(Q).
To relate the field to the underlying magnetization, we use Maxwell’s equations

in the quasi-static regime, assuming no time dependence and the absence of free
currents. Under these assumptions the magnetic field derives from a scalar potential
Φ [1], which satisfies

∆Φ = ∇ · M⃗ in R3.

For x⃗ ∈ R3 \ supp(M⃗), with ∗3d denoting the 3d convolution, this yields:

Φ (⃗x) =
(
− 1

4π |⃗t|
∗3d (∇ · M⃗)

)
(⃗x) =− 1

4π

∫∫∫
R3

∇ · M⃗(⃗t)
|⃗x− t⃗ |

d⃗ t. (1.1)

Since the SQUID measures the vertical field component B3, we use the relation

B3 =−µ0∂x3Φ in H, (1.2)

where µ0 is the magnetic permeability constant. Using Eq. (1.1) in (1.2), we write

B3 =−µ0

2

3

∑
j=1

(
∂x j pH ∗3d M j

)
in H, (1.3)

where, for all x⃗ ∈H, pH(⃗x) = x3/
(
2π |⃗x|3

)
denotes the Poisson kernel in H.

To simplify (1.3), we use the identity [1, Eq. (12)]: for all g∈ L2(R2) and j = 1,2,

∂x j pH ∗2d g = ∂x3 pH ∗2d R j[g],

where ∗2d denotes the 2d convolution with respect to the first two components, and
R j represent the 2d Riesz transforms defined as, for all x = (x1,x2)

T ∈ R2,

R j[g](x) =
1

2π
lim

ε→0+

∫∫
R2\Dε (x)

(x j − t j)g(t)
|x− t|3

dt,

with t = (t1, t2)T , and Dε(x) = {y ∈ R2 : |y−x|< ε}, ε > 0. We thus obtain:

B3(x,x3) =−µ0

2

[
∂x3 pH(·,x3)∗2d fM(·)

]
(x), (1.4)
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where

fM(x) =
∫ 0

−ℓ
(pH ∗2d f̃M)(x,−t3)d t3,

with f̃M(t, t3) = ∑
2
j=1 R j[M j(·, t3)](t)+M3(t, t3), and fM ∈ L2(R2), as Riesz trans-

forms are bounded operators on L2(R2) [6, Ch. III]. The above relation for volumet-
ric magnetizations readily adapts to planar magnetizations with fM ≡ f̃M .

1.3 Field extrapolation problem

The field extrapolation proceeds in two steps. We first estimate fM appearing in Eq.
(1.4) by solving the associated inverse problem. Then, we apply a suitable operator
to this estimate to obtain the extrapolated field component Bext

3 , on U ⊃ Q.
Motivated by Eq. (1.4), we introduce the bounded, linear operator, B : L2(R2)→

L2(Q), so that for all f ∈ L2(R2) and for a fixed x3 = h, where h corresponds to the
height of the measurement (and extrapolation) plane (see Fig. 1.1),

B f =−µ0

2

[
∂x3 pH

∣∣∣
x3=h

∗2d f
]∣∣∣

Q
,

whence, for exact measured data, for x ∈ Q, Bmeas
3 (x,h) = B fM(x). The adjoint

operator, B∗ : L2(Q)→ L2(R2), is defined as, for all g ∈ L2(Q),

B∗g =−µ0

2
∂x3 pH

∣∣∣
x3=h

∗2d (χQg),

where χQ is the characteristic function of Q.
From the vanishing property of real-analytic functions [9, Th. 1.27], we can de-

duce that Ker(B∗) = {0}. It follows that Ran(B) = L2(Q) [8, Th. 5.22.6]. Hence,
for Bmeas

3 ∈ L2(Q), there exists a minimizing sequence ( fn)n∈N ∈ L2(R2) such that
∥Bmeas

3 −B fn∥L2(Q) −→
n→+∞

0. However, ∥ fn∥L2(R2) −→
n→+∞

∞ when Bmeas
3 /∈ Ran(B).

So, a norm constraint is crucial whenever Bmeas
3 /∈ Ran(B), which is always the

case when data consist of noisy measurements. We thus consider the following con-
strained approximation problem to estimate fM:

Problem 1 Given Bmeas
3 ∈ L2(Q) and C > 0, find f ∈ L2(R2) such that

min
f∈L2(R2)

∥Bmeas
3 −B f∥L2(Q) subject to ∥ f∥L2(R2) ≤ C.

Theorem 1 Let Bmeas
3 ∈ L2(Q) \Ran(B). For a given C > 0, there exists a λ > 0

such that the unique solution f λ ∈ L2(R2) of Problem 1 satisfies

B∗B f λ +λ f λ = B∗Bmeas
3 in R2, (1.5)

and ∥ f λ∥L2(R2) = C .
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Remark: If Bmeas
3 ∈ Ran(B), the constraint in Problem 1 is inactive and the corre-

sponding solution satisfies λ = 0.
The proof of Theorem 1 follows from application of [7, Th. 4.6].

1.4 Solution approach

We adopt a projection method, approximating the infinite-dimensional problem in
L2(R2) by a finite-dimensional one in Vϕ

J = span{{ϕ j} j=1,...,J} for J ∈ N, where
{ϕ j} j=1,...,J is an arbitrary set of orthonormal basis functions on L2(R2):

f λ ≈
J

∑
j=1

c jϕ j, B∗Bmeas
3 ≈

J

∑
j=1

d jϕ j,

with (c j) j=1,...,J ∈ RJ , and the known coefficients, for j = 1, . . . ,J,

d j = ⟨B∗Bmeas
3 ,ϕ j⟩L2(R2) = ⟨Bmeas

3 ,Bϕ j⟩L2(Q).

We project equation (1.5) orthogonally onto Vϕ

J : for k = 1, . . . ,J,

J

∑
j=1

(
⟨B∗Bϕ j,ϕk⟩L2(R2)+λδ j,k

)
c j = dk, (1.6)

where δ j,k is the Kronecker symbol. Note that the matrix ⟨B∗Bϕ j,ϕk⟩L2(R2) =

⟨Bϕ j,Bϕk⟩L2(Q) is symmetric and positive definite and, with λ > 0, the system
(1.6) is uniquely solvable. The solution coefficients c j are subsequently used to com-
pute the extrapolated magnetic field component, using that fM ≈ f λ in Eq. (1.4):

Bext
3 ≈−µ0

2

J

∑
j=1

c j∂x3 pH
∣∣∣
x3=h

∗2d ϕ j in R2.

Note that Bext
3 |Q yields denoised reconstruction of Bmeas

3 . Indeed, since λ > 0,
the minimizer in the constrained problem is prevented from reproducing the rapid
fluctuations (noise) in Bmeas

3 .
We now propose two choices of bases {ϕ j}:

• Kelvin-transformed spherical harmonics

The Kelvin transform [9, Ch. 4] of spherical harmonics gives a basis on L2(R2),
preserving smoothness, algebraic decay, and orthogonality of the spherical harmon-
ics on L2(S). As these functions arise as 2d traces of harmonic functions in 3d, they
are naturally compatible with our setting; B∗Bmeas

3 is the trace on R2 of a harmonic
function in the upper half-space and decays algebraically. This suggests that this ba-
sis may yield accurate approximations of such targets with relatively few functions.

The spherical harmonics are defined as, for 0 ≤ θ ≤ π , 0 ≤ φ ≤ 2π , [10, Ch. 14]



6 Juliette Leblond, Mubasharah Khalid Omer and Dmitry Ponomarev

Y S
l,m(θ ,φ) =

(−1)l+m

2l l!

(
(l −m)!(2l +1)

4π(l +m)!

) 1
2

eι̇mφ (sinθ)m

(
d

d(cosθ)

)l+m

(sinθ)2l ,

where their degree l and order m are such that l ∈ N∪{0} and |m| ≤ l.
To derive an L2(R2)-basis from the spherical harmonics, we start by considering

a transformation based on inversion with respect to an auxiliary sphere of radius
√

2
centered at x⃗0 = (0,0,−1): for all x⃗ ∈ S\ {⃗x0},

T (⃗x) = x⃗0 +2
x⃗− x⃗0

|⃗x− x⃗0|2
,

which maps the unit sphere S to the plane R2 (at height 0), and back [9, Ch. 7]. Then,
for a function f ∈ L2(S), the Kelvin transform K is defined as: for all x ∈ R2,

K [ f ](x) =

√
2

|x|2 +1
f (T (x,0)),

and is an isometry between L2(S) and L2
ω(R2), where ω(x) = (|x|2 +1)−1. We then

define the so-called Kelvin-transformed spherical harmonics, for all x ∈ R2,

S j(x) =
1√

|x|2 +1
K [Y S

j ](x),

where we have used j = l2+l+m+1, with l =
⌊√

j−1
⌋

and m= j−
(⌊√

j−1
⌋2
+⌊√

j−1
⌋
+1
)
. The functions {S j} j∈N form an orthonormal system in L2(R2).

• Malmquist-Takenaka basis

The Malmquist-Takenaka (MT) rational functions form an orthonormal basis of
L2(R) with algebraic decay [11]. In 1d they are given by, for n ∈ Z and x ∈ R,

ϑn(x) =

√
2
π

ι̇
n
(

1+2ι̇x
1−2ι̇x

)n 1
1−2ι̇x

.

We extend the MT basis to L2(R2), as a product of the 1d functions i.e. for
n,m ∈ Z,

ψn,m(x) = ϑn(x1)ϑm(x2).

The family {ψn,m}n,m∈Z forms an orthonormal basis of L2(R2). We index the
2d MT functions by ordering (n,m) ∈ Z2 in nondecreasing values of

√
n2 +m2,

obtaining a single-indexed family {ψ j} j∈N whose oscillations increase with j.
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1.5 Numerical results and outlook

We investigate the following hypothesis: Kelvin-transformed spherical harmonics
provide more accurate approximations of algebraically-decaying targets, which are
2d traces of harmonic functions, than the 2d MT system of the same dimension.

Numerical simulations are performed in MATLAB for a specific magnetization
M⃗ supported on S, with s = 1 and ℓ= 0.2, i.e. for all t⃗ ∈ S,

M⃗(⃗t ) =

t3((t3 + ℓ)(t2
1 − s)2 +4(t2

1 − s)(t3 + ℓ)2)(t2
2 − s)2

t3((t3 + ℓ)(t2
2 − s)2 +4(t3 + ℓ)(t2

2 − s))(t2
1 − s)2

t3(t3 + ℓ)(t2
1 − s)2(t2

2 − s)2

 .

We synthetically generate Bmeas
3 from M⃗, using Eq. (1.3) with µ0 = 1. For this data,

we conduct the described reconstruction scheme using the fixed height h = 1, mea-
surement region Q = [−1,1]2 and extrapolation region U = [−10,10]2. Note that
the data is numerically generated and free of experimental noise. However, the solu-
tion’s projection onto the finite-dimensional subspace, and quadrature errors in the
computation of Bmeas

3 , introduce computational artifacts, creating numerical noise.
Using the Kelvin-transformed spherical harmonics, we first consider the approxi-

mation space VS
J = span{S1, . . . ,SJ}, for a modest J = 81. The regularization param-

eter λ is chosen via the L-curve method [12], we balance data-fidelity and solution-
size by choosing λ corresponding to the corner of the curve (Fig. 1.2 (left)). The
results are shown in Fig. 1.2; the relative L2-error is on the order O(10−6) in the
measured region and O(10−2) in the extrapolated region.

We now consider the approximation space Vψ

J = span{ψ1, . . . ,ψJ}, spanned by
the MT basis, and the same dimension J = 81. The results are shown in Fig. 1.3,
corresponding to the λ chosen via the L-curve method. The relative L2-error is on
the order O(10−5) in the measured region and O(10−1) in the extrapolated region.
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Fig. 1.2 L-curve for the deduction of λ (left), Bext
3 obtained using the approximation in VS

J (center)
and the pointwise error between the true magnetic field on U and Bext

3 (right).

Thus, for identical number of functions, the Kelvin-transformed spherical har-
monics provide a more accurate reconstruction and extrapolation than the MT ba-
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Fig. 1.3 L-curve for the deduction of λ (left), Bext
3 obtained using the approximation in Vψ

J (cen-
ter), and the pointwise error between the true magnetic field on U and Bext

3 (right).

sis. This supports the hypothesis that a basis adapted to the harmonic structure, in
addition to the decay, of the problem delivers better approximations with the same
number of functions. Future work will investigate the robustness of this advantage
on noisy experimental data, and will use the reconstructed magnetization function
( fM) to infer magnetization components.
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