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Abstract. We consider an inverse obstacle problem for the acoustic transient

wave equation. More precisely, we wish to reconstruct an obstacle characterized

by a Dirichlet boundary condition from lateral Cauchy data given on a subpart
of the boundary of the domain and over a finite interval of time. We first give a

proof of uniqueness for that problem and then propose an “exterior approach”
based on a mixed formulation of quasi-reversibility and a level set method

in order to actually solve the problem. Some 2D numerical experiments are

provided to show that our approach is effective.

1. Introduction

We address an inverse obstacle problem for the wave equation, defined as follows.
Let G be an open, bounded and connected domain of Rd, d ≥ 2, with Lipschitz
boundary. Throughout the paper, we define an obstacle as an open domain O b G
which is formed by a collection of a finite number of disjoint connected Lipschitz
domains (O is not necessarily connected), and such that Ω := G \ O is connected.
A generic point in Q := Ω × (0, T ), for T > 0, will be denoted (x, t). Let Γ be a
non-empty open subset of ∂G. The notations are illustrated on Figure 1. Given a
pair of data (g0, g1) on Γ × (0, T ), the inverse obstacle problem consists in finding
a domain O (independent of time t) and some function u(x, t) in the space

(1) H1,1(Q) := {u ∈ L2(0, T ;H1(Ω)), u ∈ H1(0, T ;L2(Ω))},
following the notation of [20], and such that

(2)


∂2
t u−∆u = 0 in Ω× (0, T )
u = g0 on Γ× (0, T )
∂νu = g1 on Γ× (0, T )
u = 0 on ∂O × (0, T )

u, ∂tu = 0 on Ω× {0},
where ν is the outward unit normal to Ω. The inverse problem that we address
is a geometric inverse problem, the obstacle to retrieve being characterized by a
Dirichlet boundary condition. We also emphasize that the data are restricted to
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2 An inverse obstacle problem for the wave equation in a finite time domain
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Figure 1. Notations

a single pair of Cauchy data on a subpart Γ of ∂G only: there are no data at all
on the complementary part ∂G \ Γ. Lastly, those Cauchy data are known only in
the finite time domain (0, T ), which prevents us from addressing the problem in
the frequency domain. Problem (2) arises in the following practical situation. The
medium G is at rest for negative time t. At initial time t = 0, an experimenter
generates a known pulse g1 on the subpart Γ of the surface of the medium G and
measures the response g0 of the medium on Γ during the time interval (0, T ), the
complementary part of the surface being inaccessible. The goal is to retrieve the
unknown obstacle O from those measurements (g0, g1) on Γ× (0, T ).
To the best of our knowledge, there are very few papers dealing with the effective
reconstruction of the obstacle: the only one we have found is [1], in which an
optimization technique is applied. However, the obstacles which are seeked in the
numerical experiments of [1] are a priori known to be circles in 2D, which are
characterized by only three real parameters. We mention that in [2] the authors also
want to retrieve a surface defined by a Dirichlet boundary condition with the help
of a single incident wave, however with measurements in an infinite time interval.
Needless to say that there are many contributions in the case of several incident
waves, in particular in the case of infinitely many. In this vein, let us mention [3],
which is based on the topological gradient, [4], which is based on the boundary
control method, or [5], which relies on the Linear Sampling Method.
A crucial issue induced by considering measurements in a finite time domain (0, T )
is uniqueness. More precisely, the natural question is: what is the minimal value
of T so that the obstacle O is uniquely determined by the Cauchy data (g0, g1) on
Γ× (0, T )? From our understanding this question is still open. In [6], however, the
author provides some minimal values of T which guarantee uniqueness, as soon as a
bound on a certain length characterizing the obstacle is assumed. Considering that
our geometric setting is slightly different from the one studied in [6] and also for the
sake of self-containment, we give a detailed uniqueness proof in 2D. However the
main concern of this paper is the effective reconstruction of the obstacle in 2D from
the data when uniqueness holds. Our strategy is to apply the so-called “exterior
approach”, first introduced in [7] in the case of the Laplace equation and then
extended in [8, 9, 10] to the case of the Stokes system, heat equation and Helmholtz
equation, respectively. We remark that an inverse problem such as (2) is both ill-
posed and non-linear. The idea consists in addressing these two issues separately
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by coupling a quasi-reversibility method and a level set method. An initial guess of
the obstacle being given, the exterior solution is updated from the lateral Cauchy
data by solving a quasi-reversibility problem. An initial guess of the solution being
given, the obstacle is updated by solving a level set problem. Our approach is
hence iterative, with one step of quasi-reversibility and one step of level set at each
iteration, until some stopping criterion is reached. Quasi-reversibility goes back to
[12]: it is a Tikhonov regularization of some linear ill-posed PDE problem which
is directly in the form of a weak formulation. This weak formulation can hence
be discretized with the help of a Finite Element Method. The main drawback of
the original method presented in [12] and later in [13] is the fact that the weak
formulation associated with an ill-posed second-order problem corresponds to a
fourth-order well-posed problem. As a consequence, the justification of such quasi-
reversibility method requires some additional regularity for the exact data and the
discretization requires some additional regularity for the approximation space. This
is why we developed in [14] an alternative mixed formulation of quasi-reversibility
which preserves the order of the original problem. Such mixed formulation has been
recently generalized in [10] and we propose to apply it once again in the case of the
wave equation with lateral Cauchy data. Concerning the level set method, we reuse
the method introduced in [7], which is based on a simple Poisson equation and has
shown its efficiency in many situations ever since. It should be noted that, due to
the specific form of the uniqueness results in the case of the wave equation in a
finite time domain, both the quasi-reversibility method and the level set method
are more difficult to justify than in the previous situations of elliptic or parabolic
equations.
This paper is organized as follows. The next section shows in which sense all the
boundary conditions in problem (2) have to be understood. Section 3 is dedicated to
some uniqueness results. Firstly it concerns a well-known unique continuation result
which is crucial in what follows and the proof of which is postponed in an Appendix,
for the sake of self-containment. Secondly it establishes a uniqueness result for the
inverse problem (2) in dimension 2. Section 4 describes the mixed quasi-reversibility
method while Section 5 describes the level set method. By merging these two
methods we derive the “exterior approach” algorithm, which is detailed in Section
6. Lastly, some numerical results which illustrate the feasibility of this approach to
solve problem (2) are presented in Section 7.

2. Some comments on boundary conditions

It is important to note that, due to the absence of boundary conditions on the
boundary ∂G \ Γ, the standard regularity results for the wave equation are useless.
This explains why, in order to justify that the boundary conditions in problem (2)
are meaningful, we assumed that the solution u belongs to the unsual space H1,1(Q)
defined by (1). Let us give a meaning to the traces (u, ∂νu) of u on Σ := Γ× (0, T )
and the traces (u, ∂tu) of u on S0 = Ω × {0}. It is readily seen that H1,1(Q)
coincides with H1(Q), since Q can be viewed as a bounded Lipschitz domain of
Rd+1. As a result, the trace of u ∈ V on ∂Q is well-defined in H1/2(∂Q), and in
particular the traces u|Σ and u|S0

are well-defined in H1/2(Σ) and H1/2(S0) as the
sets of restrictions of functions in H1/2(∂Q) to Γ× (0, T ) and Ω×{0}, respectively.
Furthermore, let us denote, for u ∈ H1(Q), v := (∇u,−∂tu) ∈ (L2(Q))d+1. If u
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4 An inverse obstacle problem for the wave equation in a finite time domain

solves the wave equation ∂2
t u−∆u = 0, then

divd+1(v) = ∆u− ∂2
t u = 0.

We conclude that v ∈ Hdiv(Q): this enables one to define v ·νd+1|∂Q ∈ H−1/2(∂Q),

which is the dual space of H1/2(∂Q). Here νd+1 denotes the outward unit normal
to the (d + 1)-dimensional domain Q. As a result, the normal derivatives ∂νu|Σ
and ∂tu|S0 are well defined in H−1/2(Σ) and H−1/2(S0) as the restrictions of dis-
tributions in H−1/2(∂Q) to Γ× (0, T ) and Ω× {0}, respectively. Let us recall that

H−1/2(Σ) and H−1/2(S0) are the dual spaces of H̃1/2(Σ) and H̃1/2(S0), the lat-
ter being defined as the subsets of functions in H1/2(Σ) and H1/2(S0) which once
extended by 0 on the whole boundary ∂Q are still in H1/2(∂Q).

3. Some uniqueness results

3.1. A basic unique continuation result. In this section, we recall a useful
unique continuation result for the wave equation. To this aim, we need to define
the geodesic distance in Ω.

Definition 3.1. If Ω ⊂ Rd is a connected open domain, for x, y ∈ Ω, the geodesic
distance between x and y is defined by

dΩ(x, y) = inf{`(g), g : [0, 1]→ Ω, g(0) = x, g(1) = y},
where g is a continuous path in Ω of length `(g). Here, the length of g is defined as

`(g) = sup

{
n−1∑
i=0

|g(ti)− g(ti+1)|, n ∈ N, 0 = t0 ≤ t1 ≤ · · · ≤ tn = 1

}
,

where | · | stands for the Euclidian distance and the sup is taken over all decompo-
sitions of [0, 1] into an arbitrary (finite) number of intervals.

Now, let us introduce the constant D(Ω,Γ) denoting the largest geodesic distance
between some point x in Ω and Γ, which will play a crucial role in the sequel.

Definition 3.2. For a connected open domain Ω, we define

D(Ω,Γ) = sup
x∈Ω

d(x,Γ), where d(x,Γ) = inf
x0∈Γ

dΩ(x, x0).

A natural question is: do we have D(Ω,Γ) < +∞? For some fixed x0 ∈ Ω, we first
define

D(Ω, x0) = sup
x∈Ω

dΩ(x, x0).

It is not difficult to see that we may have D(Ω, x0) = +∞, even if Ω is a bounded
domain. However we have D(Ω, x0) < +∞ as soon as Ω is a bounded Lipschitz
domain, which is a consequence of the fact that for x0 ∈ Ω, the application x 7→
dΩ(x, x0) has a continuous extension in Ω for the Euclidian topology [11]. In this
Lipschitz case, the definition of D(Ω, x0) can hence be extended to the case when
x0 ∈ ∂Ω. We clearly have

D(Ω,Γ) = sup
x∈Ω

inf
x0∈Γ

dΩ(x, x0) ≤ inf
x0∈Γ

sup
x∈Ω

dΩ(x, x0) = inf
x0∈Γ

D(Ω, x0).

We conclude that for a bounded Lipschitz domain, D(Ω,Γ) < +∞.
Now let us state the following classical theorem, which concerns unique continuation
for the wave equation in the presence of lateral Cauchy data, and which is proved
in Appendix for the sake of self-containment.

Inverse Problems and Imaging Volume 00, No. 0 (2018),



An inverse obstacle problem for the wave equation in a finite time domain 5

Theorem 3.3. Let us consider a Lipschitz connected open domain Ω of Rd, with
d ≥ 2, and Γ a non-empty open subset of ∂Ω. For T > 0, let us denote Q =
Ω× (0, T ).
Assume that u ∈ H1(Q) satisfies the system

(3)


∂2
t u−∆u = 0 in Ω× (0, T )
u = 0 on Γ× (0, T )
∂νu = 0 on Γ× (0, T )
u, ∂tu = 0 on Ω× {0}.

Then u vanishes in the subdomain Q0 of Q defined by

(4) Q0 = {(x, t) ∈ Ω× (0, T ), dΩ(x,Γ) < T − t}.

In particular, if T > D(Ω,Γ), then u vanishes in the subdomain Ω×(0, T−D(Ω,Γ)).

3.2. Uniqueness in the inverse obstacle problem for d = 2. For any d ≥ 2,
let us introduce the following definitions. For a connected bounded Lipschitz domain
O of Rd such that ∂O is connected, we introduce the diameter of the boundary ∂O
as

D(∂O) = sup
x,y∈∂O

d∂O(x, y),

where d∂O(x, y) is the geodesic distance from x to y in ∂O. If O is a collection
of I disjoint connected Lipschitz domains Oi such that all ∂Oi are connected, i =
1, · · · , I, we denote

D(∂O) =

I∑
i=1

D(∂Oi).

For any d, we can also define the perimeter of the domain O, that is P (O) =
∫
∂O

ds,
where s is the Lebesgue surface measure on ∂O. As above, if O is the collection
of I disjoint connected Lipschitz domains Oi, i = 1, · · · , I, we denote P (O) =∑I
i=1 P (Oi). It happens that for d = 2, the quantities P (O) and D(∂O) coincide

up to a factor 2.

Lemma 3.4. For a simply connected bounded Lipschitz domain O in R2,

P (O) = 2D(∂O).

Proof. Given x ∈ ∂O, let us consider some y ∈ ∂O such that

d∂O(x, y) = sup
ỹ∈∂O

d∂O(x, ỹ).

Such point y exists because the function ỹ 7→ d∂O(x, ỹ) is continuous on the compact
set ∂O. In dimension 2, there are only two paths g1 and g2 joining x and y on ∂O.
It happens that `(g1) = `(g2). Indeed, if we had for example `(g1) > `(g2), then
d∂O(x, y) = `(g2). There would exist some ỹ ∈ ∂O such that the two paths g̃1 and
g̃2 joining x to ỹ satisfy

`(g1) > `(g̃1) ≥ `(g̃2) > `(g2) = d∂O(x, y),

and this would contradict the fact that y maximizes ỹ 7→ d∂O(x, ỹ) on ∂O. Since
`(g1) = `(g2), we have

P (O) = `(g1) + `(g2) = 2`(g2) = 2 sup
ỹ∈∂O

d∂O(x, ỹ).

We see that supỹ∈∂O d∂O(x, ỹ) is independent of x and then P (O) = 2D(∂O).
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6 An inverse obstacle problem for the wave equation in a finite time domain

We will also need the following lemma, which is proved in [19] (see theorem IX.17
and Remark 20).

Lemma 3.5. Let Ω denote an open subset of Rd, and u ∈ H1(Ω) ∩ C0(Ω) such
that u = 0 on ∂Ω. Then u ∈ H1

0 (Ω), where H1
0 (Ω) denotes the closure of C∞0 (Ω) in

H1(Ω).

Let us now state our uniqueness result for problem (2) in two dimensions: it estab-
lishes a minimal time T which guarantees uniqueness given an imposed bound P
on the perimeter of the unknown obstacle.

Theorem 3.6. For d = 2, let us consider two obstacles O1, O2 such as defined
in the introduction and corresponding functions u1, u2 which satisfy (2) with data
(g0, g1) on Γ. We assume in addition that ui ∈ L2(0, T ;C0(Ωi)), i = 1, 2, and
that for all x0 ∈ Γ and all sufficiently small t0 > 0, the function g0(x0, ·) is not
identically zero in the interval (0, t0). Let us denote by P an upper bound of P (O1)
and P (O2) and D = D(G,Γ). If we assume that

T > P + 2D,

we have O1 = O2.

Proof. Let us define Ω12 as the connected component of G \ (O1 ∪ O2) which is
in contact with Γ and let also denote O12 = G \ Ω12. The function u := u1 − u2

satisfies in Ω12 × (0, T ) the system
∂2
t u−∆u = 0 in Ω12 × (0, T )
u = 0 on Γ× (0, T )
∂νu = 0 on Γ× (0, T )
u, ∂tu = 0 on Ω12 × {0}.

Let us consider some point x ∈ O12. For any ε > 0 there exists some x0 ∈ Γ such
that

dG(x, x0) ≤ dG(x,Γ) + ε.

Let g be a path joining x0 to x in G such that `(g) ≤ dG(x, x0) + ε, hence `(g) ≤
dG(x,Γ) + 2ε ≤ D + 2ε. The path g cuts the boundary of O12 at some point x12

such that the restriction g̃ of g joining x12 to x0 belongs to Ω12. Without loss of
generality, the point x12 belongs to the boundary of O1, so that x12 is renamed x1.
Obviously, dΩ12

(x1, x0) ≤ `(g̃) ≤ `(g), so that

(5) D ≥ dΩ12(x1, x0)− 2ε.

Now let us consider the set R = O12 \ O2 and assume that R is not empty. The
boundary of R is partitioned into a subpart of ∂O2 and Γ12 = ∂Ω12 ∩ ∂O1. For any
point x̃1 of Γ12, we have

(6) P (O12)/2 ≥ dΩ12(x̃1, x1)− ε,
where P (O12) is the perimeter of O12 (see Remark 1). That P (O12) ≤ 2P together
with (5) and (6) imply

D + P ≥ dΩ12(x1, x0) + dΩ12(x̃1, x1)− 3ε ≥ dΩ12(x̃1, x0)− 3ε.

We first propagate the vanishing property of function u from point x0 to point
x̃1. By using the second part of Proposition 5 in Ω12, we obtain from the above
estimate of dΩ12

(x̃1, x0) that for T > P + 2D, the function u(x̃1, ·) vanishes in the
interval (0, T − D − P − 3ε). Since x̃1 was an arbitrarily chosen point of Γ12, we
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obtain that u vanishes in Γ12 × (0, T −D − P − 3ε). We remark that any point of
the boundary of R is either on ∂O2 or on ∂O12 ∩ ∂O1, we hence have u2 = 0 on
∂R × (0, T −D − P − 3ε). Because of the assumption on the continuity of u2, we
obtain from Lemma 3.5 that u2 ∈ L2(0, T −D − P − 3ε;H1

0 (R)). Using the initial
condition for u2 we conclude that u2 vanishes in R× (0, T −D − P − 3ε).
We now propagate the vanishing property of function u2 from point x1 to point
x0. If we reuse the second part of Proposition 5 in Ω12 as well as the estimate of
dΩ12(x1, x0) given by (5), we obtain that for T > P + 2D, u2 vanishes at point x0

in the time interval (0, T − 2D − P − 5ε). Since ε is arbitrarily small we obtain
a contradiction to the assumption on g0. We conclude that R is empty. Since
O1∪O2 ⊂ O12 ⊂ O2, we conclude that O1 ⊂ O2. The same reasoning is then applied
with some point x ∈ O2 to obtain the same contradiction, hence O1 = O2.

Remark 1. Here we have used the fact that although O12 is generally not a Lip-
schitz domain, P (O12) is still defined since its boundary is still rectifiable and
P (O12) ≤ P (O1 ∪O2) ≤ P (O1) + P (O2).

It is natural to compare the minimal time T (O) := P (O) + 2D(G,Γ) in Theorem
3.6 with D(Ω,Γ). We have the following result, which shows that T (O) ≥ 2D(Ω,Γ).

Lemma 3.7. Let us consider two open domains G and O of R2, such that G is
a bounded Lipschitz domain and O is formed by a collection of a finite number of
connected Lipschitz domains with O b G, Ω = G\O is connected and Γ a non-empty
open set of ∂G. We have

2D(Ω,Γ) ≤ P (O) + 2D(G,Γ).

Proof. Let us consider some x ∈ Ω. For arbitrarily small ε > 0, one may find
some x0 ∈ Γ such that dG(x, x0) ≤ dG(x,Γ) + ε. If dΩ(x, x0) = dG(x, x0), then
dΩ(x,Γ) ≤ dΩ(x, x0) ≤ dG(x,Γ) + ε, and since the inequality is valid for all ε and
all x ∈ Ω, we obtain

D(Ω,Γ) ≤ D(G,Γ).

Otherwise, let us consider some path g joining x to x0 in G such that `(g) ≤
dG(x, x0) + ε. Clearly, there exists a curve h in Ω joining x0 to x consisting of
two parts: one part coincides with a sub-path of g, the other part coincides with a
subpart of the boundary of O. The length of the first part is less than `(g) while the
length of the second part is less than D(∂O), so that `(h) ≤ D(∂O) + `(g). Hence,

dΩ(x,Γ) ≤ dΩ(x, x0) ≤ `(h) + ε ≤ D(∂O) + dG(x,Γ) + 3ε

≤ D(∂O) +D(G,Γ) + 3ε,

and lastly

D(Ω,Γ) ≤ D(∂O) +D(G,Γ),

which is the result, in view of Lemma 3.4.
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4. The method of quasi-reversibility

Before addressing the inverse obstacle problem, let us focus on a linear ill-posed
Cauchy problem for the wave equation in the domain Ω× (0, T ), namely

(7)


∂2
t u−∆u = 0 in Ω× (0, T )
u = g0 on Γ× (0, T )
∂νu = g1 on Γ× (0, T )
u, ∂tu = 0 on Ω× {0}.

Problem (7) corresponds to problem (2) in the case when the obstacle O, and
hence the complementary domain Ω, is known. However, it is crucial in view of
the “exterior approach” introduced hereafter, to regularize such problem without
taking into account the boundary condition on ∂O in the problem (7). Let us
assume existence of a solution u ∈ H1(Q) to problem (7), which means in some
sense that (g0, g1) are exact data. Then from Theorem 3.3 u is uniquely defined in
Q0 = {(x, t) ∈ Ω× (0, T ), dΩ(x,Γ) < T − t}. In particular, when T > D(Ω,Γ), u is
uniquely defined in Ω× (0, T −D(Ω,Γ)).
We now describe our mixed formulation of quasi-reversibility. Let us introduce the
sets Γ̃ := ∂Ω \ Γ, Σ̃ = Γ̃× (0, T ) and ST = Ω× {T}. Let us also introduce

(8) V = {u ∈ H1(Q), u|S0
= 0},

(9) Ṽ0 = {λ ∈ H1(Q), λ|Σ̃ = 0, λ|ST
= 0},

(10) H
1/2
S0

(Σ) = {g ∈ L2(Σ), g = u|Σ, u ∈ H1(Q), u|S0 = 0}

and for g0 ∈ H1/2
S0

(Σ),

Vg = {u ∈ H1(Q), u|Σ = g0, u|S0 = 0}, V0 = {u ∈ H1(Q), u|Σ = 0, u|S0 = 0}.

The spaces V , V0 and Ṽ0 are endowed with the same norm ‖ · ‖ given by

‖u‖2 =

∫ T

0

∫
Ω

(∂tu)2 dxdt+

∫ T

0

∫
Ω

|∇u|2 dxdt.

That ‖ · ‖ is actually a norm in these three spaces is a consequence of Poincaré’s

inequality. We define H
1/2

Σ̃,ST
(Σ) as the set of traces on Σ of functions in H1(Q) that

vanish on Σ̃ and on ST , that is in other words the restrictions on Σ of functions in Ṽ0.

Its dual space H
−1/2
S0

(Σ) coincides with the set of restrictions on Σ of distributions

in H−1/2(∂Q) the support of which is contained in Σ ∪ Σ̃ ∪ ST . For what follows
we need the following weak characterization of the solutions to problem (7).

Lemma 4.1. For (g0, g1) ∈ H
1/2
S0

(Σ) × H−1/2
S0

(Σ), the function u ∈ H1(Q) is a

solution to problem (7) if and only if u ∈ Vg and for all µ ∈ Ṽ0,

(11) −
∫
Q

∂tu ∂tµdxdt+

∫
Q

∇u · ∇µdxdt =

∫
Σ

g1 µdsdt,

where the last integral means duality pairing between H
−1/2
S0

(Σ) and H
1/2

Σ̃,ST
(Σ).
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Proof. We first consider some u ∈ H1(Q) which solves problem (7). Then u ∈
Vg. For µ ∈ H1(Q), we use the following integration by parts formula, with v =
(∇u,−∂tu) ∈ (L2(Q))d+1, divd+1v ∈ L2(Q) and ∇d+1µ = (∇µ, ∂tµ) ∈ (L2(Q))d+1,

(12)

∫
Q

v · ∇d+1µdxdt = −
∫
Q

µ(divd+1v) dxdt+ 〈v · νd+1, µ〉∂Q ,

where the bracket 〈·, ·〉∂Q has the meaning of duality between H−1/2(∂Q) and

H1/2(∂Q). By considering now µ ∈ Ṽ0, we use the fact that divd+1v = 0 in Q,

that ∂tu = 0 on S0, µ = 0 on ST , ∂νu = g1 on Σ and µ = 0 on Σ̃ to obtain∫
Q

v · ∇d+1µdxdt = 〈g1, µ〉Σ ,

where the bracket 〈·, ·〉Σ has the meaning of duality between H
−1/2
S0

(Σ) and

H
1/2

Σ̃,ST
(Σ). The weak formulation (11) is achieved. Conversely, let us consider

some u ∈ Vg which satisfies (11). By taking µ ∈ C∞0 (Q), it follows that u solves the
wave equation in the distributional sense in Q. Hence formula (12) is valid, and we

obtain that for all µ ∈ Ṽ0

〈v · νd+1, µ〉∂Q = 〈g1, µ〉Σ ,

so that by using the fact that µ = 0 on Σ̃ and µ = 0 on ST ,

〈v · νd+1, µ〉Σ0
= 〈g1, µ〉Σ ,

where Σ0 = Σ ∪ S0 and the brackets 〈·, ·〉Σ0
have the meaning of duality between

H−1/2(Σ0) and H̃1/2(Σ0). By using the fact that g1 ∈ H−1/2
S0

(Σ), we obtain that

its extension g̃1 by 0 on Σ0 = Σ ∪ S0 satisfies for all µ ∈ Ṽ0,

〈v · νd+1, µ〉Σ0
= 〈g̃1, µ〉Σ0

.

We conclude that v · νd+1 = g̃1 on Σ0, then v · νd+1 = g1 on Σ and v · νd+1 = 0
on S0, that is ∂νu = g1 on Σ and ∂tu = 0 on S0. As a conclusion, problem (7) is
satisfied by u.

Due to Lemma 4.1, problem (7) is a particular instance of the abstract framework
described in [10], which we recall here. We consider three Hilbert spaces V , M and
H, endowed with the scalar products (·, ·)V , (·, ·)M and (·, ·)H and corresponding
norms ‖ · ‖V , ‖ · ‖M and ‖ · ‖H . We denote A : V → H a continuous onto operator
while for some g ∈ H, we denote Vg = {u ∈ V, Au = g}, which is an affine space.
The corresponding vector space is denoted V0, equipped with the norm ‖ · ‖V . For
a continuous bilinear form b on V ×M and a linear form m on M , let us consider
the abstract weak formulation: find u ∈ Vg such that for all µ ∈M ,

(13) b(u, µ) = m(µ).

The bilinear form b is said to satisfy the inf − sup property on V0 ×M if

Assumption 4.2. There exists α > 0 such that

inf
u∈V0
u6=0

sup
µ∈M
µ6=0

b(u, µ)

‖u‖V ‖µ‖M
≥ α.

The bilinear form b is said to satisfy the solvability property on V0 ×M if

Inverse Problems and Imaging Volume 00, No. 0 (2018),



10 An inverse obstacle problem for the wave equation in a finite time domain

Assumption 4.3. For all µ ∈M ,

∀u ∈ V0, b(u, µ) = 0 =⇒ µ = 0.

According to the Brezzi-Nečas-Babuška theorem (see, for example, [15]), the prob-
lem (13) is well-posed if and only if both conditions 4.2 and 4.3 are satisfied. Con-
versely, if either Assumption 4.2 or 4.3 fails to hold, then problem (13) is ill-posed.
Regardless of Assumptions 4.2 or 4.3, a regularized formulation of ill-posed prob-
lem (13) is the following: for ε > 0, find (uε, λε) ∈ Vg × M such that for all
(v, µ) ∈ V0 ×M ,

(14)

{
ε(uε, v)V + b(v, λε) = 0

b(uε, µ)− (λε, µ)M = m(µ).

The following theorem is proved in [10].

Theorem 4.4. For any g ∈ H and m ∈M ′, the problem (14) has a unique solution.
In addition, if g ∈ H and m ∈M ′ are such that (13) has at least one solution, then
the solution (uε, λε) ∈ Vg ×M satisfies (uε, λε) → (um, 0) in V ×M when ε → 0,
where um is the unique solution to the minimization problem

(15) inf
v∈K
‖v‖V , K := {v ∈ Vg, b(v, µ) = m(µ), ∀µ ∈M}.

Our problem (11) coincides with the general problem (13) by choosing spaces V as

specified by (8), M = Ṽ0 and H = H
1/2
S0

(Σ) as specified by (9) and (10), respectively.

The operator A : {u ∈ H1(Q), u|S0
= 0} 7→ H

1/2
S0

(Σ) is the trace mapping on Σ,

which is onto by definition of H
1/2
S0

(Σ). Lastly, the bilinear form b and linear form
m are given, for (u, µ) ∈ V ×M , by

b(u, µ) = −
∫
Q

∂tu ∂tµdxdt+

∫
Q

∇u · ∇µdxdt

and

m(µ) =

∫
Σ

g1 µdsdt,

where the integral means duality pairing between H
−1/2
S0

(Σ) and H
1/2

Σ̃,ST
(Σ). The

regularized formulation (14), which can be directly applied to our problem, consists

in the following problem for some real ε > 0: for (g0, g1) ∈ H1/2
S0

(Σ) × H−1/2
S0

(Σ),

find (uε, λε) ∈ Vg × Ṽ0 such that for all (v, µ) ∈ V0 × Ṽ0,

(16)



−
∫
Q

∂tv ∂tλε dxdt+ ε

∫
Q

∂tuε ∂tv dxdt

+

∫
Q

∇v · ∇λε dxdt+ ε

∫
Q

∇uε · ∇v dxdt = 0,

−
∫
Q

∂tuε ∂tµdxdt−
∫
Q

∂tλε ∂tµdxdt+

∫
Q

∇uε · ∇µdxdt

−
∫
Q

∇λε · ∇µdxdt =

∫
Σ

g1µdsdt,

where the last integral has the meaning of duality pairing between H
−1/2
S0

(Σ) and

H
1/2

Σ̃,ST
(Σ). Due to Theorem 4.4, which we apply in our particular case, recalling

Theorem 3.3, we obtain the following result.
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Theorem 4.5. For any (g0, g1) ∈ H1/2
S0

(Σ)×H−1/2
S0

(Σ), problem (16) has a unique

solution (uε, λε) ∈ Vg × Ṽ0. If in addition we assume there exists u ∈ H1(Q)

satisfying problem (7) for (g0, g1) ∈ H1/2
S0

(Σ) × H−1/2
S0

(Σ), the solution (uε, λε) of
problem (16) associated with the same data (g0, g1) satisfies

lim
ε→0

uε = um in H1(Q), lim
ε→0

λε = 0 in H1(Q),

where um is the unique solution of minimal norm ‖ ·‖ to problem (7). In particular,
um coincides with u in Q0 defined by (4) and if T > D(Ω,Γ), um coincides with u
in subdomain Ω× (0, T −D(Ω,Γ)).

5. The level set method

We present a simple level set method and show it enables us to identify the
obstacle O assuming that the function u which solves (2) is known in the uniqueness
domain Q0 defined by (4).

5.1. Preliminaries. This section presents, in a slightly more general case, some
results already given in [7]. Let us consider a function U ∈ H1(G) such that, for
some obstacle O b G formed by a collection of a finite number of disjoint connected
open Lipschitz domains such that Ω = G \O is connected, we have

(17)

 U ≥ 0 in Ω
U = 0 on ∂Ω \ ∂G = ∂O
U ≤ 0 in O,

where the second line is satisfied in the sense of trace. We now define a sequence of
open domains (ωn) by following induction. Let us choose f ∈ H−1(G) such that

(18) f ≥ ∆U

in the sense of H−1(G) and an open domain ω0 such that O ⊂ ω0 b G . The open
domain ωn being given, we define

(19) ωn+1 = ωn \ supp(sup(vωn
, 0)),

where vω := wω + U and wω is the unique solution w in H1
0 (ω) of problem ∆w =

f −∆U . Here supp denotes the essential support of a function.

Remark 2. With additional regularity assumptions, we can give a simpler defi-
nition of vωn and ωn+1. Indeed, in the case when ωn is a Lipschitz domain, the
function vωn

is the unique solution to the problem{
∆v = f in ωn
v = U on ∂ωn,

while when vωn
is a continuous function, the domain ωn+1 is defined by

ωn+1 = {x ∈ ωn, vωn
(x) < 0}.

Our level set method essentially relies on the weak maximum principle (see, for
example, [18]).

Lemma 5.1. Let Ω be an open domain of Rd, and u ∈ H1(Ω) such that ∆u ≥ 0 in
the sense of H−1(Ω), and sup(u, 0) ∈ H1

0 (Ω). Then sup(u, 0) = 0 in Ω.
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12 An inverse obstacle problem for the wave equation in a finite time domain

In what follows, for a functional space V , V + (resp. V −) denotes the subset of
measurable functions v ∈ V such that v ≥ 0 (resp. v ≤ 0) almost everywhere. For
example, the function u of Lemma 5.1 satisfies u ∈ H1

0 (Ω)−. We begin with the
following proposition.

Proposition 1. For all n ∈ N, we have O ⊂ ωn+1 ⊂ ωn b G.

Proof. Let us assume that O ⊂ ωn b G. We have to prove that O ⊂ ωn+1. By
using Lemma 5.1 and the fact that f −∆U ≥ 0, we obtain wωn ≤ 0 in ωn, that is
vωn = wωn +U ≤ U in ωn. Since U ≤ 0 in O ⊂ ωn, we obtain vωn ≤ 0 in O. Hence
O ⊂ ωn \ supp(sup(vωn

, 0)) = ωn+1. The proof is complete.

Proposition 1 immediately implies the following proposition by using [16].

Proposition 2. The sequence of open domains ωn converges, in the sense of the
Hausdorff distance for open domains, to the set

ω∞ = Int

(⋂
n

ωn

)
,

such that O ⊂ ω∞ b G.

The definition of the Hausdorff distance for open domains and various relative
properties are detailed in [16]. We need the following lemma, which is proved in
[16] (Corollary 3.1.12).

Lemma 5.2. Let Ω be an open domain of Rd, and u, v two functions in H1(Ω)
(resp. H1

0 (Ω)). Then inf(u, v), sup(u, v) ∈ H1(Ω) (resp ∈ H1
0 (Ω)). Furthermore,

the mappings (u, v) 7→ inf(u, v) and (u, v) 7→ sup(u, v) (H1(Ω)×H1(Ω)→ H1(Ω))
are continuous.

We now consider the following assumption, which concerns the continuity of the
Dirichlet solution to the Laplace equation with respect to the domain and is exten-
sively analyzed in [16].

Assumption 5.3. For f ∈ H−1(G), if wω denotes the solution in H1
0 (ω) of problem

∆w = f in the domain ω, the sequence (wωn
) tends to wω∞ in H1

0 (G) when n →
+∞.

Remark 3. Some sufficient conditions on the sequence (ωn) that enable us to fulfill
Assumption 5.3 are given in [16]. In particular, for d = 2, a sufficient condition to
have Assumption 5.3 is that all the sets G \ ωn, n ∈ N, are connected, which is a
consequence of Šverák’s Theorem (see Theorem 3.4.14 in [16]). Note, however, that
we don’t know if the sets G \ ωn are connected from the general definition of the
ωn.

Proposition 3. Let us consider the open domain ω∞ defined by Proposition 2 and
assume that 5.3 is satisfied. If R := ω∞ \O 6= ∅, we have U ∈ H1

0 (R).

Proof. The Assumption 5.3 implies that wωn → wω∞ in H1
0 (G), and hence vωn →

vω∞ in H1(G). Since ω∞ ⊂ ωn for all n, we have vωn
≤ 0 a.e. in ω∞, hence vω∞ ≤ 0

a.e. in ω∞.
Now let us prove that U ∈ H1

0 (R). We recall that U − vω∞ ≥ 0 in ω∞, that is
U − vω∞ ∈ H1

0 (ω∞)+. By using corollary 3.1.13 in [16], there exists a sequence
ψn ∈ C∞0 (ω∞)+ such that ψn → U − vω∞ in H1(ω∞). Let ϕ ∈ C∞0 (G)+, ϕ ≡ 1
on ω∞. Since U |∂O = 0, U |Ω ≥ 0 and ϕ|∂G = 0, we have ϕU ∈ H1

0 (G \ O)+.
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As a consequence there exists ϕn ∈ C∞0 (G \ O)+ such that ϕn → ϕU in H1(G \
O). Now, by using Lemma 5.2, the functions θn := inf(ϕn|R, ψn|R) converge to
inf(ϕU |R, (U − vω∞)|R) = U |R in H1(R), since vω∞ ≤ 0 a.e. in ω∞ and ϕ ≡ 1 on
ω∞.
Let us denote Kn and Ln the supports of ϕn and ψn respectively. We have Kn ⊂
G \O and Ln ⊂ ω∞, hence Kn ∩Ln ⊂ R. For x ∈ R \ (Kn ∩Ln), either ϕn(x) = 0
and ψn(x) ≥ 0, or ϕn ≥ 0 and ψn = 0, hence θn(x) = 0. This implies that
supp(θn) ⊂ Kn ∩ Ln, that is θn in compactly supported in R. Since θn converges
to U in H1(R), U ∈ H1

0 (R).

5.2. Convergence of the level set method. Let us now set d = 2 and apply
the previous results to some particular function U . Let us assume that some obstacle
O and some solution u satisfy problem (2) with T > T (O) = P (O)+2D(G,Γ). From
Theorem 3.3 and Theorem 3.6, at most one single pair (O, u) is compatible with
data (g0, g1). We define a function U in the whole domain G such that

(20)

 U =

(∫ T−T (O)/2

0

(u(·, t))2 dt

) 1
2

in Ω

U |O ∈ H1
0 (O)−.

Note that the integral in (20) is uniquely defined from (g0, g1) since T (O) ≥
2D(Ω,Γ). Indeed, T − T (O)/2 ≤ T − D(Ω,Γ) and the uniqueness domain of the
function u contains Ω × (0, T − D(Ω,Γ)) from Theorem 3.3. Besides, by taking
simply U = 0 in O, we see that we can find at least one function U satisfying (20).
Let us prove the following result.

Lemma 5.4. If the function U satisfies (20), it belongs to H1(G) and satisfies the
assumptions (17).

Proof. First, that u ∈ H1(Q) implies∫
Ω

U2 dx =

∫ T−T (O)/2

0

∫
Ω

(u(x, t))2 dxdt < +∞.

Moreover, for i = 1, 2,

∂U

∂xi
=

1(∫ T−T (O)/2

0
(u(·, t))2 dt

) 1
2

∫ T−T (O)/2

0

∂u(·, t)
∂xi

u(·, t) dt

Hence ∣∣∣∣ ∂U∂xi
∣∣∣∣ ≤

(∫ T−T (O)/2

0

(
∂u(·, t)
∂xi

)2

dt

) 1
2

.

Then ∫
Ω

(
∂U

∂xi

)2

dx ≤
∫ T−T (O)/2

0

∫
Ω

(
∂u(x, t)

∂xi

)2

dxdt < +∞.

This proves that U |Ω ∈ H1(Ω). The homogeneous Dirichlet boundary condition
satisfied by u on ∂O (see problem (2)) implies that U |∂Ω\∂G = 0, which together

with U |O ∈ H1
0 (O) implies that U ∈ H1(G). In addition, since U ≥ 0 on Ω, U = 0

on ∂O = ∂Ω \ ∂G and U ≤ 0 on O, the assumptions (17) are satisfied.

The following theorem shows that under Assumption 5.3 the sequence of domains
(ωn) converges to the true obstacle O.
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14 An inverse obstacle problem for the wave equation in a finite time domain

Theorem 5.5. We consider some obstacle O and some function u which satisfy
problem (2) with T > T (O) (O and u are both uniquely defined). We assume in ad-
dition that u ∈ L2(0, T ;C0(Ω)), that for all x0 ∈ Γ and all sufficiently small t0 > 0,
the function g0(x0, ·) is not identically zero in the interval (0, t0). Let U ∈ H1(G)
and f ∈ H−1(G) satisfy (20) and (18).
Let ω0 denote an open domain such that O ⊂ ω0 b G and (ωn) denotes the decreas-
ing sequence of open domains defined by (19).
With additional Assumption 5.3, we have

Int

(⋂
n

ωn

)
= O,

with convergence in the sense of Hausdorff distance for open domains.

Proof. We already know from Proposition 2 thatO ⊂ ω∞. Let us denoteR = ω∞\O
and let us assume that R 6= ∅. We shall find a contradiction. From Proposition 3
we have U ∈ H1

0 (R).
We remark that u = 0 in ∂R× (0, T − T (O)/2), because

U2 =

∫ T−T (O)/2

0

(u(·, t))2 dt in R

and u(·, t) ∈ C0(Ω) for almost all t. By using the initial condition in (2), we get
u = 0 in R× (0, T −T (O)/2). By the same unique continuation argument that was
used in the proof of Theorem 3.6 and since T > T (O), we obtain that there exists
some x0 ∈ Γ such that u(x0, ·) vanishes in the interval (0, T − T (O)/2 − T (O)/2),
that is (0, T − T (O)), which contradicts our assumption on g0. We conclude that
R = ω∞ \ O = ∅. As a conclusion, O ⊂ ω∞ ⊂ O. Since O has a continuous
boundary, the interior of the set O is O, and lastly O = ω∞.

Remark 4. It is not clear for us that T > 2D(Ω,Γ) suffices to have uniqueness in
problem (2). Note however that if uniqueness holds for T > 2D(Ω,Γ), then it can be
seen from the proof that Theorem 5.5 is valid by replacing T (O) = P (O)+2D(G,Γ)
by the smaller distance 2D(Ω,Γ).

6. Description of the “exterior approach”

In this section, we deduce from the results of Sections 4 and 5 an algorithm to ap-
proximately solve the problem (2) presented in the introduction, that is to retrieve
the obstacle O from the lateral Cauchy data (g0, g1) on Γ × (0, T ). In Theorem
5.5 we have shown convergence of the level set method to the true obstacle O if
the field defined by (20) is based on the true solution u. In practice such function
is unknown but following Theorem 4.5, it can be approximated in the subdomain
Ω×(0, T−D(Ω,Γ)) with the help of the solution uε of the quasi-reversibility problem
(16). This is why we propose the following algorithm in the continuous framework.

Algorithm :

1. Choose an initial guess O0 such that O ⊂ O0 b G and G \O0 is connected.
2. Step 2: the domain On being given, solve the quasi-reversibility problem (16)

in Ωn × (0, T ) with Ωn := G \ On for some selected parameter ε > 0. The
solution is denoted (un, λn).
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3. Step 3: the function un being given, solve the non-homogeneous Dirichlet
problem

(21)


∆ϕn = f in On

ϕn = Vn :=

(∫ T−T (On)/2

0

(un(·, t))2 dt

) 1
2

on ∂On

for some selected f ∈ H−1(G). Define

On+1 = {x ∈ On, ϕn(x) < 0}.
4. Go back to Step 2 until the stopping criteria is reached.

Alternatively, it can be tempting, in view of Remark 4, to replace T (On) by
2D(Ωn,Γ) in the above algorithm. This is what we will do later in our numeri-
cal experiments.

Remark 5. Since the sequence of domain (On) is non increasing, it is natural to
investigate the monotonicity of the functions O 7→ T (O) = P (O) + 2D(G,Γ) and
O 7→ D(Ω,Γ) (recall that Ω = G\O) with respect to inclusion. The first function is
clearly neither increasing nor decreasing. We now show that this property is shared
by the second function on a simple example illustrated by Figure 2. The domain G
is an equilateral triangle ABC of centroid O, while Γ is the whole boundary of G.
It is easy to build some O1 and O2 such that O2 ⊂ O1 and D(Ω2,Γ) > D(Ω1,Γ). It
suffices to consider two disks centered at O: the obstacle O2 is the small green disk
while O1 is the big red disk on the right part of Figure 2. Building some O1 and
O2 such that O2 ⊂ O1 and D(Ω2,Γ) < D(Ω1,Γ) is more involved. The obstacle O1

is chosen as the domain delimited by the isosceles trapezoid represented in red on
the left part of Figure 2. Let H be the intersection of lines (AO) and (BC) and M

such that
−−→
HM =

−−→
HA/6. We assume that HA = 1, so that HM = 1/6. The upper

side of O1 is such that M is its middle, while the three other sides almost touch
the sides of triangle OBC. The obstacle O2 is a small disk of radius ε centered on
the line (AO) and strictly contained in the trapezoid O1. It is not difficult to see
that D(Ω1,Γ) = MN where N is the orthogonal projection of M on the line (AC).
A straightforward computation leads to MN = 5/12 = 1/3 + 1/12, while clearly
D(Ω2,Γ) ≤ 1/3 + πε, so that D(Ω2,Γ) < D(Ω1,Γ) for sufficiently small ε. Note
that in these two examples, G and both obstacles O1 and O2 are convex.

7. Numerical experiments

7.1. Validation of the quasi-reversibility method. We begin with some
preliminary numerical experiments in 2D with the mixed formulation of quasi-
reversibility (16) to solve problem (7) when the obstacle O is supposed to be known.
The computation domain Ω × (0, T ), with Ω = G \ O, is then fixed. The domain
G is here the disc of center (0, 0) and radius R = 5 in R2, while Γ is the whole
boundary of G. We discretize the space/time domain Q = Ω× (0, T ) with the help
of prismatic finite elements, that is tensor products of P1 triangular finite elements
in dimension 2 for the spatial domain Ω and P1 finite elements in dimension 1 for
the time interval (0, T ). We refer to [9] for a description of such finite element and
an analysis of the induced discretization error in a slightly different case (heat equa-
tion instead of wave equation). Computations are obtained with the Finite Element
Library XLife++ [17]. In all our computations related to the inverse problem, the
time interval is 4/15 (whatever T is) while the mesh size with respect to space is
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Figure 2. Illustration of the non-monotonicity of the mapping
O 7→ D(Ω,Γ)

such that the number of vertices on ∂G is either 164 (in Figures 5, 8 and 9) or 92 (in
Figures 3, 4, 6 and 7). In order to build some artificial data (g0, g1) on Γ× (0, T ),
we compute the solution to the following forward problem

(22)


∂2
t u−∆u = 0 in Ω× (0, T )
∂νu = g on Γ× (0, T )
u = 0 on ∂O × (0, T )

u, ∂tu = 0 on Ω× {0},

for some Neumann data g. This forward computation is based on a classical finite
difference (leap-frog) scheme with respect to time and a finite element method
with respect to space, in such a way that the meshes and the discretizations of
the forward and inverse problems are different. Our artificial data are then given
by (g0 = u|Γ×(0,T ), g1 = g). We can then use these lateral Cauchy data (g0, g1) as
inputs in the mixed formulation of quasi-reversibility (16), in which we set ε = 0.001.
We present two cases.
In the first case, the obstacle O is the disc of center (0, 0) and radius r = 2.5,
T = 5.5 while g(x, t) = 10 sin2(t), which means it is a full radial case. For that
geometry, the uniqueness domain defined by (4) reduces to

(23) Q0 = {(x, t) ∈ Q, |x| > R− T + t}.

In the Figure 3, we have plotted the discrepancy uε−u between the quasi-reversibility
solution and the exact solution for several fixed times t ∈ (0, T ) as a function of
the radial distance |x|. From Theorem 4.5, the function u − uε is supposed to be
small in Q0 for small ε. It can be seen that Figure 3 is consistent with (23) since
R− T = −0.5.
In the second case, the obstacle is the union of two discs, one centered at (2.5, 1)
of radius 1 and one centered at (−2.5, 0) of radius 1.5, T = 15 and g(x, t) =
(20 + 10 cos(2θ)) sin2(t). Here θ is the polar angle, that is some point x ∈ ∂G
has Euclidian coordinates (5 cos θ, 5 sin θ). On Figure 4 we have plotted the quasi-
reversibility solution uε as well as the discrepancy uε−u on the meshed space/time
domain Q = Ω×(0, T ). The visible slice corresponds to t = T/2. It can be seen that
for t = T/2, the error is small near the outer boundary of Ω and is concentrated near
the inner boundary. This is due to the fact that the intersection of the uniqueness
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Figure 3. Radial case. Discrepancy |uε − u| as a function of |x|,
for t = 2.5, t = 3, t = 3.5, t = 4 and t = 4.5.

domain Q0 and the plane t = T/2 is formed by the set {x ∈ Ω, dΩ(x,Γ) < T/2}
and to the fact that the inverse problem in Q0 is exponentially ill-posed.

Figure 4. Two discs. Left: function uε. Right: function |uε − u|.

7.2. Validation of the exterior approach. We are now in a position to test
the exterior approach, that is the algorithm of Section 6 to solve the inverse obstacle
problem (2) in the case when the unknown obstacle is the union of the two discs
as before. Note that the cylindrical domain G × (0, T ) is meshed once and for all
with the help of the prismatic finite elements described above. At iteration n, the
obstacle On and its complementary domain Ωn are polygonal domains based on
the mesh of G. The initial guess O0 is chosen as the disk centered at (0, 0) and of
radius 4.1. In the step 2 of the algorithm at iteration n, the 3D quasi-reversibility
problem is solved in domain Ωn × (0, T ) with the help of the tensorized P1 ⊗ P1
finite elements, while in step 3, the 2D level set problem is solved in domain On with
simple P1 finite elements. Let us discuss some critical parameters of the algorithm
of Section 6.
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1. About the computation of T (On): in view of Remark 4, we shall use
2D(Ωn,Γ) instead of T (On) in (21), since 2D(Ωn,Γ) may be much smaller
than T (On). The distance D(Ωn,Γ) can be computed numerically by solving
a forward wave propagation problem in Ωn × (0,+∞):

(24)


∂2
t u−∆u = 0 in Ωn × (0,+∞)

u = 10 e−25(t−2)2

on Γ× (0,+∞)
∂νu = 0 on (∂G \ Γ)× (0,+∞)
∂νu = 0 on ∂On × (0,+∞)
u, ∂tu = 0 on Ω× {0}.

Due to the unit speed of propagation, the minimal time of full impact on Ωn
(with the pulse shift of 2 taken into account) coincides with D(Ωn,Γ). In
practice, we observe that the only values of u which are involved in (21) are
taken on ∂Ωn \ ∂G = ∂On, which leads us to compute

Dn = sup
x∈∂On

inf
y∈Γ

dΩn
(x, y)

instead of D(Ωn,Γ). In our numerical experiments, we hence replace T (On)
by 2Dn in the algorithm. More precisely, time integration stops once all the
nodes of the polygonal line ∂On have been reached by the pulse, let say when
|u| > 0.2 × 10 = 2 (20% of the initial pulse amplitude) in order to take the
numerical dispersion effects into account.

2. About the choice of f : in practice the distribution f in (21) is chosen
as a constant spatial function which must be sufficiently large in view of
(18). Following our algorithm, strictly speaking such constant f does not
change during the iterations n. However, it may be more efficient to iteratively
decrease the value of f in step 3 in order to prevent the algorithm from
a preliminary stop due to the fact that the evolution of the level sets may
occur on a scale that cannot be resolved numerically because the mesh size
is not small enough. This is why we introduce a refinement of step 3 which
in some sense finds the optimal value of f . Note that such refinement also
includes a stopping criterion. In the following refined step 3, we have set
Mn+1 = supx∈∂On

Vn(x) for n ≥ 0 (M0 = +∞) and f is a large constant.

Refined step 3 of the algorithm :

(a) Take k = 0, fk = f
(b) Find the solution ϕ̃ to problem (21) with constant fk and define

Õ = {x ∈ On, ϕ̃(x) < 0}
(c) Do the following tests:

(i) If Õ = ∅, restart the complete algorithm with a larger constant f
(ii) If Mn+1 > 1.05Mn or k = 5, stop the algorithm and the final

retrieved obstacle is O = On
(iii) If Õ = On, then fk+1 := fk − fk/50, k + 1→ k, go to step (b)

(iv) Otherwise, On+1 = Õ, n+ 1→ n, 0→ k and return to step 2 of the
algorithm.

3. About the choice of ε: the quasi-reversibility regularization parameter is
ε = 0.001 in the following numerical experiments. In practice, this value
should be set in accordance with the amplitude of the noise which contam-
inates the data (g0, g1). For instance, the Morozov’s discrepancy principle
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could be applied to the mixed formulation of quasi-reversibility as done in
[10] in the simpler case of Helmholtz equation. However, as shown in [10],
such procedure requires to take into account the Dirichlet data g0 in a weak
way instead of in a strong way. Since such work seems quite significant, we
intend to address it in a future contribution.

Before testing the complete algorithm, we wish to test the level set method only.
More precisely, in order to illustrate Theorem 5.5, we only apply step 3 of the
algorithm of Section 6 by using the exact solution u in Ωn × (0, T −Dn) instead of
the quasi-reversibility solution un. From Theorem 5.5, the sequence of domains On
is supposed to converge to the true domain O in the sense of Hausdorff distance.
This convergence can be checked, up to the spatial mesh size, on the Figure 5. In
this computation, the final time is T = 25, which is much larger than 2D(Ω,Γ) = 10,
that is the minimal time for convergence in Theorem 5.5. The boundaries of O0

and some selected intermediate obstacles On until stationarity of the algorithm are
represented on the picture.

Figure 5. Validation of the level set method (T = 25)

Now let us try experiments with the complete algorithm of Section 6. In Figure 6,
we analyze the identification results for exact data and increasing final time. We
have tested three values of T , namely T = 2D(Ω,Γ) = 10, T = 15 and T = 25,
keeping the same discretization time step. We observe that when T increases, the
identification results improve: not only the final obstacle is better retrieved but the
number of iterations to achieve the final obstacle is smaller. In Figure 7, we analyze
the identification results for fixed final time T = 25 and noisy data. We artificially
perturb both Dirichlet data g0 and Neumann data g1 by some pointwise random
noise which is then rescaled in such a way that we exactly control the L2 relative
error δ (see [7] for more details). In other words, the noisy data (gδ0, g

δ
1) satisfy

‖gδ0 − g0‖L2(Γ×(0,T )) = δ‖g0‖L2(Γ×(0,T )), ‖gδ1 − g1‖L2(Γ×(0,T )) = δ‖g1‖L2(Γ×(0,T )).

The three pictures of 7 correspond to δ = 0 (exact data), δ = 2% and δ = 5%. In
picture 8, for exact data and final time T = 25, we consider the difficult case of
partial data. More precisely, data (g0, g1) are only known for π/2 ≤ θ ≤ 2π, that
is Γ is now formed by 3/4-th of the circle ∂G. We consider obstacles formed by
only one disc, either located far away from the subpart of ∂G on which we have no
data, or close to that subpart. Clearly, the identification result is better in the first
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Figure 6. Two discs and exact data. Top left: T = 10. Top right:
T = 15. Bottom: T = 25

case. Finally, in the last Figure 9, we consider a boomerang-shape obstacle, which
is highly non-convex, in the case of full data (Γ = ∂G) and T = 15, either with
δ = 0 (no noise) and δ = 2%.

Remark 6. In difficult configurations like in Figure 9, the identification would
be better by improving the mixed formulation of quasi-reversibility in different
directions, for example local mesh refinement (like in [21]) and iterations of the
mixed formulation (like in [22] and [9]).

Appendix: proofs of unique continuation results

First, we have the following local result [23], which is itself a consequence of
Holmgren’s theorem for the wave equation.

Lemma 7.1. Let us consider δ, τ > 0 and x1, x2 ∈ Rd such that τ > |x1 − x2|. Let
us define the open and convex domains

O1 = B(x1, δ)× (−τ, τ)

and

O2 =
⋃

λ∈[0,1]

B((1− λ)x1 + λx2, δ)× (−τ + λ|x1 − x2|, τ − λ|x1 − x2|).
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Figure 7. Two discs and noisy data. Top left: δ = 0 (exact data).
Top right: δ = 0.02. Bottom: δ = 0.05

Figure 8. Partial (exact) data and one disc. Left: obstacle lo-
cated far away from ∂G\Γ. Right: obstacle located close to ∂G\Γ

If u ∈ D′(O2) satisfies ∂2
t u−∆u = 0 in the sense of distributions and u = 0 in O1,

then u = 0 in O2.
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Figure 9. Boomerang obstacle. Left: δ = 0 (exact data). Right:
δ = 0.02

In order to propagate uniqueness, we will need the concept of δ-sequence of balls
introduced in [24].

Lemma 7.2. Consider two points x0 and x in the open and connected domain Ω.
For all ε, δ0 > 0, there exists some δ ∈ (0, δ0) and a δ-sequence of balls B(qn, δ) for
n = 0, · · · , N that links x0 to x, that is

q0 = x0,
B(qn+1, δ) ⊂ B(qn, 2δ), n = 0, · · · , N − 1,

B(qn, 3δ) ⊂ Ω, n = 0, · · · , N,
qN = x,

such that Nδ ≤ dΩ(x0, x) + ε.

Remark 7. Such a δ-sequence of balls B(qn, δ) necessarily satisfies |qn− qn+1| ≤ δ
for n = 0, · · · , N − 1.

Now let us prove the following result.

Proposition 4. Let Ω be an open and connected domain of Rd, d ≥ 2. Let u ∈
H1(Q) solves the problem

(25)

{
∂2
t u−∆u = 0 in Ω× (0, T )
u, ∂tu = 0 on Ω× {0}.

Assume that x0 ∈ Ω and δ0 > 0 are such that B(x0, δ0) ⊂ Ω and u = 0 in B(x0, δ0)×
(0, T ). For any x ∈ Ω such that T > dΩ(x0, x), for any ε ∈ (0, T − dΩ(x0, x)), there
exists some δ ∈ (0, δ0) such that u = 0 in B(x, δ)× (0, T − dΩ(x0, x)− ε).

Proof. Let us extend u by 0 in Ω × (−T, 0) (without change of notation) so that
u ∈ H1(Ω×(−T, T )), ∂2

t u−∆u = 0 in Ω×(−T, T ) and u = 0 in B(x0, δ0)×(−T, T ).
Let us take δ and a sequence of balls depending on ε and δ0 as in Lemma 7.2. Now
we apply N times lemma 7.1 with

O1 = B(qn, δ)× (−T + Sn, T − Sn)

and

O2 =
⋃

λ∈[0,1]

B((1−λ)qn+λqn+1, δ)×(−T+Sn+λ|qn−qn+1|, T−Sn−λ|qn−qn+1|),
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for all 0 ≤ n ≤ N − 1. Here we have denoted (with convention S0 = 0)

Sn =

n−1∑
m=0

|qm − qm+1|.

It is straightforward to check that O2 ⊂ B(qn, 2δ) × (−T, T ) ⊂ Ω × (−T, T ) for
0 ≤ n ≤ N − 1. Since u = 0 in B(q0, δ)× (−T, T ), then u = 0 in B(q1, δ)× (−T +
S1, T − S1),· · · , lastly u = 0 in B(qN , δ)× (−T + SN , T − SN ). We note that

T − SN = T −
N−1∑
m=0

|qm − qm+1| ≥ T −Nδ ≥ T − dΩ(x0, x)− ε,

Hence u = 0 in B(x, δ) × (0, T − dΩ(x0, x) − ε), which completes the proof of the
proposition.

We are now able to prove Theorem 3.3.

Proof of Theorem 3.3. Let us pick some x ∈ Ω and choose ε ∈ (0, ε0(x)) with
ε0(x) = (T − dΩ(x,Γ))/3. Since dΩ(x,Γ) = infx0∈Γ dΩ(x, x0), one may find x0 ∈ Γ
such that dΩ(x,Γ) ≥ dΩ(x, x0) − ε. Now let us define Ω+ = Ω ∪ B(x0, ε), and u+

the extension of u by 0 in Ω+× (0, T ). The function u+ ∈ H1(Ω+× (0, T )) satisfies
in Ω+ × (0, T )  ∂2

t u+ −∆u+ = 0 in Ω+ × (0, T )
u+ = 0 on Ω+ × {0}
∂tu+ = 0 on Ω+ × {0},

as well as u+ = 0 in (Ω+ \Ω)× (0, T ). For some x+ ∈ Ω+ \Ω, we have dΩ+
(x, x+) ≤

dΩ+
(x, x0) + dΩ+

(x0, x+) ≤ dΩ+
(x, x0) + ε ≤ dΩ(x, x0) + ε, since Ω ⊂ Ω+ and by

using the very definition of the geodesic distance, so that dΩ(x,Γ) ≥ dΩ+(x, x+)−2ε.
There exists some δ0 such that u+ = 0 in B(x+, δ0)× (0, T ). By using Proposition
4 in domain Ω+, we obtain that there exists some δ < δ0 such that u+ = 0 in
B(x, δ) × (0, T − dΩ+

(x, x+) − ε). As a conclusion, for any ε ∈ (0, ε0(x)), there
exists δ such that u = 0 in B(x, δ) × (0, T − dΩ(x,Γ) − 3ε). Since ε is arbitrarily
small, u vanishes in a vicinity of x for t < T − dΩ(x,Γ). In conclusion u vanishes
in Q0. In the particular case when T > D(Ω,Γ), for x ∈ Ω we have by definition of
D(Ω,Γ),

dΩ(x,Γ) ≤ D(Ω,Γ) = T − (T −D(Ω,Γ)),

so that u vanishes in Ω× (0, T −D(Ω,Γ)).

We complete this appendix by an additional proposition required in the proof of
Theorem 3.6.

Proposition 5. Let Ω be a Lipschitz connected open domain of Rd, with d ≥ 2,
and let u ∈ H1(Q)∩L2(0, T ;C0(Ω)) solve the problem (25). We assume one of the
two properties.

1. x0 ∈ Ω and δ0 > 0 are such that B(x0, δ0) ⊂ Ω and u = 0 in B(x0, δ0)× (0, T )
2. x0 ∈ ∂Ω and δ0 > 0 are such that u = 0 and ∂νu = 0 in B(x0, δ0)∩∂Ω×(0, T ).

We now consider x ∈ ∂Ω such that T > dΩ(x0, x). Then u(x, ·) = 0 in (0, T −
dΩ(x0, x)).
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Proof. Let us prove the part 1 of the proposition. There exists a continuous path
g in Ω of length `(g) ≤ dΩ(x0, x) + ε joining x0 to x. For any point y on this path,
the sub-path g̃ of g joining x to y satisfies

dΩ(x, y) ≤ `(g̃) ≤ `(g) ≤ dΩ(x0, x) + ε,

By using Proposition 4, we obtain that there exists some δ < δ0 such that u = 0 in
B(y, δ)× (0, T − dΩ(x0, x)− 2ε). Since ε is arbitrarily small, we have u(y, ·) = 0 in
(0, T − dΩ(x0, x)). Let us introduce a sequence of points yn located on path g and
tending to x. We now use the fact that u ∈ L2(0, T ;C0(Ω)), that is∫ T

0

sup
y∈Ω

|u(y, t)|2 dt < +∞.

Starting from ∫ T−dΩ(x0,x)

0

|u(yn, t)|2 dt = 0

and passing to the limit n→ +∞ in the above equation with the help of Lebesgue’s
theorem, we obtain that ∫ T−dΩ(x0,x)

0

|u(x, t)|2 dt = 0,

which completes the proof of part 1. The part 2 of the proposition is obtained from
part 1 and the same extension argument as used in the proof of Theorem 3.3.
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