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Abstract. We introduce a new numerical method for solving time-harmonic acoustic scat-
tering problems. The main focus is on plane waves scattered by smoothly varying material
inhomogeneities. The proposed method works for any frequency ω, but is especially efficient
for high-frequency problems. It is based on a time-domain approach and consists of three
steps: i) computation of a suitable incoming plane wavelet with compact support in the
propagation direction; ii) solving a scattering problem in the time domain for the incom-
ing plane wavelet; iii) reconstruction of the time-harmonic solution from the time-domain
solution via a Fourier transform in time. An essential ingredient of the new method is a
front-tracking mesh adaptation algorithm for solving the problem in ii). By exploiting the
limited support of the wave front, this allows us to make the number of the required degrees
of freedom to reach a given accuracy significantly less dependent on the frequency ω. We also
present a new algorithm for computing the Fourier transform in iii) that exploits the reduced
number of degrees of freedom corresponding to the adapted meshes. Numerical examples
demonstrate the advantages of the proposed method and the fact that the method can also
be applied with external source terms such as point sources and sound-soft scatterers. The
gained efficiency, however, is limited in the presence of trapping modes.
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1. Introduction

We consider time-harmonic wave scattering problems in inhomogeneous media with smooth-
ly varying material properties. Such problems become notoriously hard to solve when the
angular frequency ω is large. To obtain a given accuracy with a standard finite difference
or finite element method requires at least O(ωd) degrees of freedom [6], where d denotes
the number of space dimensions. On top of that, standard iterative solvers and multigrid
methods break down or converge slowly for high frequencies [18].

*A. Arnold, S. Geevers, and I. Perugia have been funded by the Austrian Science Fund (FWF) through the
project F 65 “Taming Complexity in Partial Differential Systems”. I. Perugia has also been funded by the
FWF through the project P 29197-N32. A. Arnold and D. Ponomarev were supported by the bi-national
FWF-project I3538-N32.
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2 AN ADAPTIVE FEM FOR SCATTERING PROBLEMS

One way to reduce the computational complexity for large frequencies is by combining
finite element methods with asymptotic methods [23, 36]. An asymptotic method, such as
the geometrical optics method, is used to determine the wave propagation directions and a
plane-wave finite element method is then used to solve the scattering problem. A drawback
of this approach is that standard geometrical optics does not account for diffracted fields and
incorporating diffraction phenomena typically requires an ad hoc approach. Instead of using
an asymptotic method, one can also extract the dominant wave propagation directions from
the solution of a lower-frequency scattering problem [19].

Another way to reduce the computational complexity is by using a classical finite differ-
ence or finite element method with a standard iterative solver, but in combination with a
sweeping preconditioner [16, 17, 40]; for a more recent overview of several sweeping precon-
ditioning methods, see [20]. The number of iterations then becomes nearly independent of
the frequency, which means that the computational complexity scales almost as O(ωd).

Instead of solving the scattering problem directly in the frequency domain, one can also
solve the scattering problem in the time domain. The time-harmonic solution can be obtained
from a solution to a time-dependent wave equation by exploiting the limiting amplitude
principle [33, 45, 35] or by applying a Fourier transformation in time. Classical time domain
methods are the finite difference and finite element time domain methods [46, 42]. Time-
domain methods that are specifically devised for solving frequency-domain problems include
the controllability method [12, 24], with its spectral version [30] and its extensions [29, 27],
the WaveHoltz method [5], and the time-domain preconditioner of [41].

While both frequency-domain and time-domain methods are commonly used in practice
and are expected to remain relevant in the future, this paper will focus on the time-domain
approach. Some of the advantages of time-domain methods are that they are inherently
parallel and straightforward to implement, without the need of storing Krylov subspaces
and matrix factorisations and without the need of implementing linear solvers and moving
absorbing boundary layers. However, for classical finite difference and finite element time
domain methods, the number of degrees of freedom is at least O(ωd) and the number of time
steps is at least O(ω) due to the CFL condition, resulting in a computational complexity of
at least O(ωd+1). In this paper, we present an adaptive finite element time-domain method
that reduces the average number of degrees of freedom per time step to almost O(ωd−1),
resulting in a computational cost that scales almost as O(ωd).

The main idea of adaptive finite element time-domain methods is to automatically adapt
the mesh over time in such a way that fine elements are used near the wave front and coarser
elements are used away from the wave front. The mesh adaptation algorithms are typically
driven by a posteriori error estimators/indicators. Adaptive finite element methods for the
wave equation were studied for a conforming finite element discretisation in space combined
with a discontinuous Galerkin discretisation in time [31, 34, 44], the Crank–Nicholson scheme
in time [9, 26, 25], the implicit Euler scheme in time [11, 21], and the leap-frog scheme in
time [22]. Adaptive finite element methods based on a discontinuous Galerkin discretisation
in space were presented and analysed in [1, 3, 2]. An anisotropic adaptive mesh refinement
algorithm was studied in [39]. Adaptive finite element schemes tailored for a given goal func-
tional were studied in [10, 8]. Adaptive finite element schemes have also been studied for
other time-dependent problems such as the Stefan problem [37] and nonlinear wave equa-
tions [4]. Here, we present a new adaptive finite element time-domain method that is tailored
for efficiently solving time-harmonic scattering problems and has the following distinguishing
features:

• The source term is obtained from an incoming plane wavelet with compact support
in the direction of propagation of width O(ω−1).
• The adapted meshes are obtained from a set of nested meshes that are defined a

priori.
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• The mesh is not updated at each time step, but only after every m time steps. In the
numerical examples, we have m ∼ 10− 100.
• The time-harmonic field is obtained using an adapted algorithm for computing the

Fourier transform in time that exploits the reduced number of degrees of freedom of
the adapted meshes.

In the numerical section, we present an implementation of the method using a fully explicit
conforming finite element time-stepping scheme combined with the perfectly matched layer
of [28].

The paper is organised as follows: In Section 2, we explain how we solve the time-harmonic
scattering problem using a time-domain approach. The adaptive finite element method for
solving the time-dependent problem and the adapted method for computing the Fourier
transform in time are then given in Section 3. Details of the numerical implementation and
several numerical examples are given in Section 4. Finally, our findings are summarised in
Section 5.

2. Solving the time-harmonic scattering problem in the time domain

We are interested in solving the time-harmonic wave scattering problem in d dimensions
governed by the Helmholtz equation

−ω2(US + UI)− β−1∇ · (α∇(US + UI)) = 0 in Rd,(1a)

[far field radiation condition on US ],(1b)

where US = US(x) is the scattered wave field that needs to be resolved, UI = UI(x) is a
given incoming plane wave, ω > 0 is the angular frequency, ∇ and ∇· denote the gradient
and divergence operator, respectively, and α = α(x) ≥ αmin > 0 and β = β(x) ≥ βmin > 0
are two material parameters that are assumed to vary smoothly in space. Our main interest
is the case where ω is large. We assume that there exists a bounded domain Ωin ⊂ Rd such
that α and β are constant, say α = α0 and β = β0, in the exterior domain Ωex := Rd \ Ωin.

We also assume that the incoming plane wave is of the form UI(x) = eiω(r̂·x)/c0 , with i the

imaginary unit (i2 = −1), r̂ a unit direction vector, and c0 :=
√
α0/β0 the wave propagation

speed in the exterior domain.
We can rewrite (1) as

−ω2US − β−1∇ · (α∇US) = F in Rd,(2a)

[far field radiation condition on US ],(2b)

with F := ω2UI + β−1∇ · (α∇UI). Note that F = 0 in Ωex.

Remark 2.1. In acoustic scattering, US is the scattered pressure field, α is the reciprocal of
the mass density ρ = ρ(x) of the medium, and β is the reciprocal of ρc2, with c = c(x) being
the wave propagation speed of the medium.

A common way to obtain the scattered wave field US is by solving a wave scattering problem
in the time domain for a time-harmonic source term of the form F (x)e−iωt. If the limiting
amplitude principle is valid [38, 15], the time-dependent scattered wave field converges to
US(x)e−iωt as t tends to infinity; see Appendix A.

Alternatively, we can compute the scattered wave field uS(x, t) for a suitable source term
f(x, t) with compact support in space and time. Let Ft denote the Fourier transform with

respect to time, namely Ft[ϕ](ω′) =
∫
R e
−iω′tϕ(t) dt. If Ft[f ](·,−ω) = F , then it follows from

the limiting amplitude principle that US = Ft[uS ](·,−ω); see Lemma A.2 in Appendix A.
Our proposed numerical method is based on this latter approach. In particular, we solve
the scattered wave field uS(x, t) corresponding to a single incoming plane wavelet uI(x, t),
defined such that UI = Ft[uI ](·,−ω), and then compute US = Ft[uS ](·,−ω). By plane wavelet
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we mean a plane wave with compact support in the propagation direction. We describe this
approach in detail in the three steps below.

Step 1. Defining the incoming plane wavelet. We consider an incoming plane wavelet of
the form uI(x, t) := ωψ(ω(t − (r̂ · x)/c0)), where ψ = ψ(ξ) is some real-valued, smooth
function with supp(ψ) = [−ξ0, ξ0], where ξ0 > 0 is some constant independent of ω, and

such that its Fourier transform F[ψ] satisfies F[ψ](−1) =
∫ ξ0
−ξ0 e

iξψ(ξ) dξ = 1. The incoming

wave field is thus a traveling plane wavelet of amplitude O(ω) and with a support of width
2c0ξ0ω

−1 = O(ω−1). The Fourier transform of uI is given by

Ft[uI ](x, ω̃) = Ft[ωψ(ω(t− (r̂ · x)/c0))](x, ω̃)

= ωFt[ψ(ω(t− (r̂ · x)/c0))](x, ω̃)

= ωe−iω̃(r̂·x)/c0Ft[ψ(ωt)](x, ω̃)

= e−iω̃(r̂·x)/c0Ft[ψ(t)](x, ω̃/ω)

= e−iω̃(r̂·x)/c0F[ψ](ω̃/ω)

and since F[ψ](−1) = 1, we therefore have Ft[uI ](·,−ω) = UI . An illustration of uI is given
in Figure 1.

Step 2. Solving a wave scattering problem in the time-domain. Having defined the incoming
plane wavelet uI , we next solve the scattered wave field uS(x, t) given by the wave equation

∂2
t (uS + uI)− β−1∇ · (α∇(uS + uI)) = 0 in Rd × (t0,∞),(3a)

[zero initial conditions on uS at t = t0],(3b)

where ∂2
t denotes the second-order time derivative, and t0 := infx∈Ωin(r̂ ·x)/c0− ξ0ω

−1 is the
time when the incoming plane wavelet first enters Ωin. We can rewrite this equation as

∂2
t uS − β−1∇ · (α∇uS) = f in Rd × (t0,∞),(4a)

[zero initial conditions on uS at t = t0],(4b)

where f := −∂2
t uI + β−1∇ · (α∇uI). Note that f has only support in Ωin × (t0, tf ), where

tf := supx∈Ωin
(r̂ · x)/c0 + ξ0ω

−1 is the time when the incoming plane wavelet leaves Ωin.
Furthermore, since Ft[uI ](·,−ω) = UI , it follows that Ft[f ](·,−ω) = F .

Step 3. Reconstructing the Helmholtz solution using a Fourier transform. Since Ft[f ](·,−ω) =
F , it follows that, after extending uS by zero in Rd × (−∞, t0), we have Ft[uS ](·,−ω) = US .
Having computed the scattered wave field uS given by (4), we can thus reconstruct the
solution to the Helmholtz equation given in (2) by computing the limit

US = Ft[uS ](·,−ω) = lim
t→∞

∫ t

t0

eiωτuS(·, τ) dτ.(5)

The advantage of this approach is that the scattered wave field uS corresponds to an
incoming plane wavelet of amplitude O(ω) and with a support of width O(ω−1). Motivated
by geometric optics, we expect that, when ω is large and when there are no trapping modes,
the solution uS is a travelling wave that has a steep gradient near the wave front, and a small
gradient that is more or less independent of ω everywhere else; see also Figure 6 in Section 4.
In the finite element approximation of uS , we can exploit this property and significantly
reduce the computational cost by using an adaptive, time-dependent spatial mesh, where a
fine mesh is used near the wave front and a coarser mesh, with mesh width independent of ω,
is used elsewhere.

Remark 2.2. We can readily extend the approach for a wave scattering problem that includes
a sound-soft scatterer Ωsc. The wave scattering problem is then given by equation (1), but
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Figure 1. Illustration of the incoming plane wavelet uI(x, t) = ωψ(ω(t− (r̂ ·
x)/c0)) at time t = −0.5 (left) and t = 0.5 (middle), and its Fourier transform
Ft[uI ](·,−ω) (right). We chose ω = 20π, r̂ = (1, 0), c0 = 1, and ψ defined as
in Section 4.2.

with a spatial domain Rd \ Ωsc instead of Rd, and with an additional boundary condition of
the form

US + UI = 0 on ∂Ωsc.

The approach remains identical, except that in equations (3) and (4) in Step 2, the spatial
domain is Rd \ Ωsc instead of Rd and the additional boundary condition is of the form

uS = −uI on (t0,∞)× ∂Ωsc.

Remark 2.3. With a slight modification, the approach can also be applied to a wave scattering
problem of the form in (2) with F = F (x) an arbitrary external source term with bounded
support. In Step 1, we then only need to define ψ, but not uI . In Step 2, we then solve
equation (4) for f(x, t) = ωψ(ωt)F (x), with t0 := −ξ0ω

−1 the earliest time when f(·, t)
is non-zero. Note that f only has support in supp(F ) × (−ξ0ω

−1, ξ0ω
−1). Step 3 remains

unaltered. If F is a source term with very local support in space, such as a point source, we
again expect that we can solve the time-domain problem efficiently using an adaptive mesh.

A description of the adaptive finite element method is given in the following section.

3. An adaptive finite element method

We aim to solve the wave equation given in (4) by using a finite element method with an
adapted spatial mesh that is constantly updated over time. We simultaneously update the
right-hand side of (5) by applying a discretised Fourier transform in time that exploits the
reduced number of degrees of freedom of the adapted spatial meshes.

The main idea of the adaptive finite element method is as follows: we consider a finite
computational domain Ω ⊃ Ωin with an absorbing boundary and split the time domain into
small intervals (Tj−1, Tj) of length O(ω−1). Let uh denote the finite element approximation
to uS . At the beginning of each time interval, we construct an adapted mesh Tj of the domain
Ω based on the current discrete approximation uh(·, Tj−1). We then project uh(·, Tj−1) into
the finite element space of Tj and solve the discretised wave equation on Tj for the time
interval (Tj−1, Tj).

For constructing Tj , we aim for the coarsest possible mesh on which uS can still be ap-
proximated accurately during the time interval (Tj−1, Tj). To construct such a mesh, we
assume that the current discrete approximation uh(·, Tj−1) is an accurate approximation of
uS(·, Tj−1) and take into account that uS travels during the time interval (Tj−1, Tj) and is

generated by the incoming wave uI . Let cmax := supx∈Ω

√
α(x)/β(x) denote the maximum

wave propagation speed. The construction of Tj consists of the following steps:
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• Coarsen. Coarsen the mesh Tj−1 and project uh(·, Tj−1) onto the discrete space
associated with the coarser mesh.
• Estimate. Compute the projection error, i.e. compute the difference between uh(·, Tj−1)

and its projection onto the coarser mesh.
• Mark 1. Mark all elements of the coarser mesh where the projection error is above a

certain threshold. Also mark all elements of the coarser mesh that overlap with the
support of the incoming wave uI(·, Tj−1).
• Mark 2. Mark all elements of the coarser mesh that are within a distance cmax(Tj −
Tj−1) of elements that were marked in the first round.
• Refine. Refine the coarser mesh at all marked elements to obtain Tj .

To accurately approximate the Fourier transform of uh in time, we normally need to sample
uh at all the degrees of freedom of a uniformly fine mesh at each time step. By computing
the Fourier transform using an adapted algorithm, we can significantly reduce the average
number of sampling points per time step.

A detailed description of the complete method is given in the following subsections.

3.1. A finite element method with a time-dependent mesh. Consider the wave scat-
tering problem given in (4). To approximate the scattered wave field uS using a finite element
method, we consider a bounded polygonal domain Ω ⊃ Ωin, and impose an absorbing bound-
ary condition or add an absorbing boundary layer at ∂Ω. Since, however, the main steps of
our adaptive finite element method do not depend on the type of boundary condition, we
consider in this section a zero Dirichlet boundary condition uS |∂Ω = 0 in order to simplify
the presentation. We thus consider a wave equation of the form

∂2
t u− β−1∇ · (α∇u) = f in Ω× (t0,∞),(6a)

u(·, t0) = ∂tu(·, t0) = 0 in Ω,(6b)

u = 0 on ∂Ω× (t0,∞).(6c)

Let Tup = O(ω−1) be the time after which the mesh is updated and define Tj := t0 + jTup.
Also, let Tj denote the simplicial/square/cubic mesh of Ω used during the time interval
(Tj−1, Tj ]. For any mesh T , let UT denote the corresponding finite element space, given by

UT := {u ∈ H1
0 (Ω) | u ◦ φE ∈ Û for all E ∈ T },

with φE : Ê → E the affine element mapping, Ê the reference element, and Û the polynomial
reference space. Also, let LT : UT → UT denote the discretisation of the spatial operator
u 7→ −β−1∇ · (α∇u) for a given mesh T . For simplicity, we consider here the operator LT
defined such that

(βLT u,w) = (α∇u,∇w) ∀w ∈ UT ,

where (·, ·) denotes the L2(Ω) or L2(Ω)d inner product. A slightly different discretisation
that allows for an explicit expression of LT is given in Section 4.1.2. Finally, let Πj denote
a projection operator that projects into the space UTj . The semi-discrete finite element
formulation can be stated as follows: for j = 1, 2, . . . , find uj : [Tj−1, Tj ]→ UTj such that

∂2
t uj + LTjuj = fTj in Ω× (Tj−1, Tj),(7a)

uj(·, Tj−1) = Πjuj−1(·, Tj−1),(7b)

∂tuj(·, Tj−1) = Πj∂tuj−1(·, Tj−1),(7c)

with u0(·, T0) ≡ 0, ∂tu0(·, T0) ≡ 0, and fTj (·, t) ∈ UTj a discretisation of f(·, t).
For the time discretisation, we consider here the central difference scheme, although the

adaptive method can also be applied to other time integration schemes. Let ∆t = Tup/m
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denote the time step size, with m > 0 some positive integer. Also, let tn := t0 + n∆t and
unj := uj(·, tn). We approximate ∂2

t uj(·, tn) by the central difference scheme

D2
t u

n
j :=

un+1
j − 2unj + un−1

j

∆t2
.(8)

Now, let nj := mj. The fully discrete finite element formulation can be stated as follows: for
j = 1, 2, . . . and for n : nj−1 − 1 ≤ n ≤ nj , find unj ∈ UTj such that

D2
t u

n
j + LTjunj = fTj (·, tn) for n : nj−1 ≤ n ≤ nj − 1,(9a)

unj = Πju
n
j−1 for n = nj−1 − 1 and n = nj−1,(9b)

with u0
0 ≡ 0 and u−1

0 ≡ 0. We can rewrite equation (9a) as

un+1
j = −un−1

j + 2unj + ∆t2(−LTjunj + fTj (·, tn)).(10)

An extended time stepping scheme, that takes into account an absorbing boundary layer and
the discretisation of f , is given in Section 4.1.2.

In practice, we cannot solve the wave equation for t→∞, but have to stop at some finite
time tstop = Tjstop . To determine jstop, we use a stopping criterion of the form

sup
x∈Ω
|unj

j (x)| ≤ ε0,(11)

where ε0 > 0 is an a priori chosen threshold value. In other words, we stop the computations
when the scattered wave field is close to zero, which means it has almost completely left the
computational domain.

An overview of how to implement the adaptive finite element method is given in Algo-
rithm 1. Here, we use the following functions:

• Tj = updateMesh(Tj−1, u
n
j−1, t

n): computes the new mesh Tj given the current
mesh Tj−1, the current discrete wave field unj−1, and the current time tn. A detailed
description of updateMesh and how to choose the initial mesh T0 is given in Section
3.2 below.
• unj := project(unj−1, Tj−1, Tj): computes the projection unj = Πju

n
j−1.

• un+1
j = doTimeStep(unj , u

n−1
j , Tj , tn): computes the wave field at the next time step

un+1
j using the formula in (10).

• Stop(unj , Tj , tn): returns true if tn > tf and if the stopping criterion given in (11) is
satisfied. Returns false otherwise.

3.2. Adapting the mesh. To construct adapted meshes Tj , we define a priori a set of
nested meshes {T 1, T 2, . . . , T K}, K ≥ 2, where T 1 is the coarsest mesh with a mesh width
h1 independent of ω, and T K is the finest mesh with a mesh width hK of order ω−1 or less.
We assume that, in case of no mesh adaptation, the mesh T K is sufficiently fine for solving
the wave equation with the desired accuracy.

We construct adapted meshes Tj from elements in
⋃K
k=1 T k. The initial mesh T0 is chosen

as the finest mesh T K . The algorithm Tj = updateMesh(Tj−1, u
n
j−1, t

n) for updating the
mesh is given in Algorithm 2, which consists of the following functions:

• P = getParentElements(T ): returns the set of all elements in
⋃K−1
k=1 T k that are

coarser than those of the given mesh T , i.e. it returns

P = {E ∈
K−1⋃
k=1

T k \ T | E ⊃ E′ for some E′ ∈ T }.

• T = getChildElements(P): returns the mesh T ⊂
⋃K
k=1 T k, given its parent ele-

ments P = getParentElements(T ). In particular, getChildElements returns
T =

⋃
E∈P getSubElements(E) \ P.
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Algorithm 1 solving the wave equation using a time-dependent mesh

procedure solveWaveEquation
Th ← T0 . set initial mesh
uh ← 0, unewh ← 0, and uoldh ← 0 . initialise wave field
for j = 1, 2, . . . do

n = nj−1 . at this point, uh = unj−1, uoldh = un−1
j−1 , Th = Tj−1

if stop(uh, Th, tn) then
return uh

end if
T newh ← updateMesh(Th, uh, tn) . T newh ← Tj
uh ← project(uh, Th, T newh ) . uh ← unj
uoldh ← project(uoldh , Th, T newh ) . uoldh ← un−1

j

Th ← T newh . Th ← Tj
for ` = 0, 1, 2, . . . ,m− 1 do

n← nj−1 + ` . at this point, uh = unj , uoldh = un−1
j

unewh ← doTimeStep(uh, u
old
h , Th, tn) . unewh ← un+1

j

uoldh ← uh
uh ← unewh

end for
end for

end procedure

• TE = getSubelements(E): returns, for a given element E ∈ T k with k ≤ K − 1,
the set of the elements in T k+1 that are a subset of E.
• P∗j−1 = markElements(Pj−1, u

n
j−1, t

n): returns the set of all elements in Pj−1 that
need to be refined. We mark all elements E ∈ Pj−1 that also have subelements
in Pj−1. For the elements E ∈ Pj−1 that have no further subelements in Pj−1, we
only mark those for which the function needsRefinement(E, unj−1, t

n) returns true.
Pseudocode of the function markElements is given in Algorithm 3.
• needsRefinement(E, unj−1, t

n): returns true if and only if

E ∩ support(uI(·, tn)) 6= ∅,(12)

or

ηE := sup
x∈E
|unj−1(x)−ΠEu

n
j−1(x)| > η0,(13)

where ΠE denotes a projection operator that projects into the discrete space of E
and η0 > 0 is some threshold value defined a priori.
• Pj = markNearbyElements(P∗j−1): for k = 1, 2, . . . ,K − 1, returns all elements

in T k that are within a distance cmaxTup of an element in P∗j−1 ∩ T k. The distance

between two elements E1 and E2 is defined as dist(E1, E2) := infx∈E1,y∈E2 |x− y|.
An illustration of the mesh adaptation algorithm is given in Figure 8 below.

3.3. Computing the Fourier Transformation. We can approximate the Fourier trans-
form in (5) by a discrete Fourier transformation:

US = Ft[uS ](·,−ω) =

∫ ∞
t0

eiωtuS(·, t) dt ≈
∞∑
n=1

∆teiωt
n
uS(·, tn).

Furthermore, we can approximate uS(·, tn) by the finite element approximation unh, where
unh := unj for n : nj−1 + 1 ≤ n ≤ nj and where unj is the solution to the fully discrete problem
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Algorithm 2 update the mesh

function updateMesh(Tj−1, u
n
j−1, t

n)

Pj−1 ← getParentElements(Tj−1)
P∗j−1 ← markElements(Pj−1, u

n
j−1, t

n)

Pj ← markNearbyElements(P∗j−1)

Tj ← getChildElements(Pj)
return Tj

end function

Algorithm 3 mark elements for refinement

function markElements(Pj−1, u
n
j−1, t

n)

P∗j−1 ← ∅ . initialise the set of marked elements
for E ∈ Pj−1 do

if getSubelements(E) ∩ Pj−1 6= ∅ then
P∗j−1 ← P∗j−1 ∪ E . mark E

else if needsRefinement(E, unj−1, t
n) then

P∗j−1 ← P∗j−1 ∪ E . mark E
end if

end for
return P∗j−1

end function

formulated in (9). We assume that uS(·, tn) ≈ 0 in Ω for n > nstop := njstop . We then obtain
the approximation

US ≈ U
nstop

h :=

nstop∑
n=1

∆teiωt
n
unh.

We can compute U
nstop

h by setting U0
h ≡ 0 in Ω and by using the recursive relation

Unh = Un−1
h + ∆teiωt

n
unh for n = 1, 2, . . . , nstop.(14)

To accurately approximate US on the entire computational domain Ω, we need to compute
U
nstop

h on a globally fine mesh T K , which means that, if we use the formula in (14), we would

need to evaluate unh at each time step at all the degrees of freedom of T K . Since unh is only
known at the degrees of freedom of some adapted mesh Tj , this means we would need to
interpolate unh at the degrees of freedom of T K at each time step. We can significantly reduce

the average number of interpolation points per time step in the computation of U
nstop

h by
using an adapted space-time mesh.

Let Q be a space-time mesh for the space-time domain Ω × (T0, Tjstop) with space-time
elements Q of the form Q = EQ× (TjQ,0 , TjQ,1). We choose the space-time elements such that
EQ ∈ Tj for j : jQ,0 < j ≤ jQ,1. Let χQ(x, t) be the characteristic function given by

χQ(x, t) :=

{
χEQ

, t ∈ (TjQ,0 , TjQ,1 ],

0, otherwise,
χE(x) :=

{
1, x ∈ E
0, otherwise.

A discrete version of χE is given in Section 4.1.2 below. We have the partition of unity
property ∑

Q∈Q
χQ(x, tn) = 1 for a.e. x ∈ Ω, ∀n : 1 ≤ n ≤ nstop.(15)
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We can therefore write

U
nstop

h =

nstop∑
n=1

∆teiωt
n
unh

(15)
=

nstop∑
n=1

∑
Q∈Q

χQ(·, tn)

∆teiωt
n
unh

=
∑
Q∈Q

(nstop∑
n=1

χQ(·, tn)∆teiωt
n
unh

)
=:
∑
Q∈Q

∆UQ.(16)

Note that ∆UQ has support only in EQ. With a slight abuse of notation, we let ∆UQ also
denote its restriction to EQ. Which definition is used will be clear from the context.

Let nQ,0 := njQ,0 and nQ,1 := njQ,1 . We can compute ∆UQ by first setting ∆UQ = ∆U
nQ,1

Q ,

where ∆U
nQ,1

Q is computed by setting ∆U
nQ,0

Q = 0 in EQ and by using the recursive relation

∆UnQ = ∆Un−1
Q + ∆teiωt

n
unh|EQ

for n : nQ,0 + 1 ≤ n ≤ nQ,1.

Note that, in order to compute ∆UQ, we only need the values of unh at the degrees of freedom

corresponding to the spatial element EQ. To compute U
nstop

h =
∑

Q∈Q∆UQ, we need to

interpolate ∆UQ at the degrees of freedom of the finest mesh T K at EQ. However, we only
need to do this once for each space time element.

To minimise the computational cost, we choose the space-time elements as large as possible.
This means that we choose the time intervals (TQ,0, TQ,1) as large as possible, namely such
that EQ ∈ Tj for all j : jQ,0 < j ≤ jQ,1 and such that EQ /∈ Tj for j = jQ,0 and j = jQ,1 + 1.
An illustration of a space-time mesh is given in Figure 4 below.

In practice, we do not need to construct the space-time mesh explicitly. Let Q(j, E) denote
the unique space-time element Q ∈ Q such that E = EQ and jQ,0 < j ≤ jQ,1. We define
∆Uj,E := ∆UQ(j,E) and ∆Unj,E := ∆UnQ(j,E). We also define

U
nj

h :=
∑

Q∈Q: jQ,1≤j
∆UQ.

We have that U0
h ≡ 0 and we can compute U

nstop

h by computing, for j = 1, 2, . . . , jstop, the
following:

U
nj

h = U
nj−1

h +
∑

Q∈Q: jQ,1=j

∆UQ,

or, equivalently,

U
nj

h = U
nj−1

h +
∑

E∈Tj\Tj+1

∆Uj,E ,(17)

with Tjstop+1 := ∅. We can compute ∆Uj,E = ∆U
nj

j,E by first setting ∆U0
0,E ≡ 0 for all E ∈ T0

and by computing, for j = 1, 2, . . . , jstop, the following:

∆Unj,E = ∆Un−1
j,E + ∆teiωt

n
unh|E ∀E ∈ Tj & n : nj−1 + 1 ≤ n ≤ nj ,(18a)

∆U
nj−1

j,E ≡ 0 ∀E ∈ Tj \ Tj−1,(18b)

∆U
nj−1

j,E = ∆U
nj−1

j−1,E ∀E ∈ Tj ∩ Tj−1.(18c)

Therefore, letting ∆Unj := {∆Unj,E}E∈Tj , the algorithm for computing U
nstop

h is given in
Algorithm 4, which consists of the following functions:

• Uh = updateFT(Uh,∆U
n
j−1, Tj−1, Tj): computes Uh|E ← Uh|E + ∆Unj−1,E for all

E ∈ Tj−1 \ Tj .
• ∆Unj = initialiseNewIncrements(∆Unj−1, Tj−1, Tj): sets ∆Unj,E ← 0 for all E ∈
Tj \ Tj−1 and ∆Unj,E ← ∆Unj−1,E for all E ∈ Tj ∩ Tj−1.
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• ∆Unj = updateIncrements(∆Un−1
j , unh, Tj , tn): computes Unj,E = Un−1

j,E +∆teiωt
n
unh|E

for all E ∈ Tj .

Algorithm 4 compute the discrete Fourier transform with respect to time

function computeFT({unh}
nstop

n=1 , {Tj}
jstop
j=1 )

Uh ← 0 . initialise Fourier transform
∆Uh ← 0 . initialise increments
for j = 1, 2, . . . , jstop do

n← nj−1 . at this point, Uh = U
nj−2

h , ∆Uh = ∆Unj−1

Uh ← updateFT(Uh,∆Uh, Tj−1, Tj) . Uh ← Unh
∆Uh ← initialiseNewIncrements(∆Uh, Tj−1, Tj) . ∆Uh ← ∆Unj
for ` = 1, 2, . . . ,m do

n← nj−1 + `
∆Uh ← updateIncrements(∆Uh, u

n
h, Tj , tn) . ∆Uh ← ∆Unj

end for
end for
Uh ← updateFT(Uh,∆Uh, Tjstop , ∅) . Uh ← U

nstop

h
return Uh

end function

3.4. Overview of the complete algorithm. To approximate the solution US to the Helm-
holtz equation given in (2), we approximate the solution uS to the time-dependent wave
equation in (4) using Algorithm 1 and then approximate the Fourier transform Ft[uS ](·,−ω)
using Algorithm 4. We can solve the wave equation and compute the Fourier transform
simultaneously, resulting in Algorithm 5. This last algorithm gives a complete overview of
the proposed method for solving the Helmholtz equation.

4. Numerical Examples

We present numerical examples for wave scattering problems in 1 and 2 spatial dimensions.
Details of the finite element discretisation are provided for the 2-dimensional case. The
discretisation for the 1-dimensional case can be readily deduced from the 2-dimensional case.
All the numerical experiments presented in this section have been carried out in MATLAB
R2017a.

4.1. Absorbing boundary layer and finite element discretisation. We start by spec-
ifying how we impose an absorbing boundary layer and then provide details of the finite
element discretisation.

4.1.1. Absorbing boundary layer. We consider the wave equation in (6) for a rectangular
domain and add an additional absorbing boundary layer. Let Ω0 = (−L1, L1)× (−L2, L2) ⊃
Ωin be the region of interest, and let ΩABL be an additional absorbing boundary layer of
width W surrounding Ω0. We define the computational domain by Ω = Ω0 ∪ ΩABL =
(−L1 −W,L1 + W ) × (−L2 −W,L2 + W ). We apply the perfectly matched layer that was
introduced in [28] and further analysed in [32, 7]. The resulting wave equation is given by

∂2
t u+ (ζ1 + ζ2)∂tu+ ζ1ζ2u− β−1∇ · (α(∇u+ s)) = f in Ω× (t0,∞),(19a)

∂ts + Z1s + Z2∇u = 0 in Ω× (t0,∞),(19b)

u(·, t0) = ∂tu(·, t0) = 0 in Ω,(19c)

s(·, t0) = 0 in Ω,(19d)

u = 0 on ∂Ω× (t0,∞),(19e)
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Algorithm 5 solving the Helmholtz equation using a time-domain approach

procedure solveHelmholtzEquation
Th ← T K . set initial mesh
uh ← 0, unewh ← 0, and uoldh ← 0 . initialise wave field
Uh ← 0 . initialise Fourier transform
∆Uh ← 0 . initialise increments
for j = 1, 2, . . . do

n = nj−1 . at this point, Th = Tj−1, uh = unj−1, u
old
h = un−1

j−1

. also, at this point, Uh = U
nj−2

h , ∆Uh = ∆Unj−1

if stop(uh, Th) then
Uh ← updateFT(Uh,∆Uh, Th, ∅) . Uh ← Unh
return Uh

end if
T newh ← updateMesh(Th, uh, tn) . T newh ← Tj
Uh ← updateFT(Uh,∆Uh, Th, T newh ) . Uh ← Unh
∆Uh ← initialiseNewIncrements(∆Uh, Th, T newh ) . ∆Uh ← ∆Unj
uh ← project(uh, Th, T newh ) . uh ← unj
uoldh ← project(uoldh , Th, T newh ) . unewh ← un−1

j

Th ← T newh . Th ← Tj
for ` = 0, 1, 2, . . . ,m− 1 do

n← nj−1 + ` . at this point, uh = unj , u
old
h = un−1

j ,∆Uh = ∆Unj
unewh ← doTimeStep(uh, u

old
h , Th, tn) . unewh ← un+1

j

uoldh ← uh . uoldh ← unj
uh ← unewh . uh ← un+1

j

∆Uh ← updateIncrements(∆Uh, uh, Th, tn+1) . ∆Uh ← ∆Un+1
j

end for
end for

end procedure

with

Z1 :=

[
ζ1 0
0 ζ2

]
and Z2 :=

[
ζ1 − ζ2 0

0 ζ2 − ζ1

]
.

Here, s = s(x) = (s1(x), s2(x)) is an auxiliary vector field that has support only in ΩABL,
and ζ1 = ζ1(x1) ≥ 0 and ζ2 = ζ2(x2) ≥ 0 are two additional parameters that are nonzero
only in ΩABL. In particular, ζ1(x1) is nonzero only for x1 : L1 ≤ |x1| ≤ L1 + W and ζ2(x2)
is nonzero only for x2 : L2 ≤ |x2| ≤ L2 +W .

4.1.2. Finite element discretisation. To construct the adapted meshes, we use a set of nested
rectangular meshes {T k}Kk=1 that are constructed as follows. First, we define a sequence

of mesh widths h1 > h2 > · · · > hK . Mesh T k is then constructed using elements of size
hk,1 × hk,2, where hk,i = hk in the region |xi| < Li and hk,i = hK in the region |xi| > Li,

for i = 1, 2. In other words, T k is a Cartesian mesh of width hk in the main domain Ω0,
but has thin elements of the finest resolution hK in the absorbing boundary layer ΩABL. An
illustration of the nested meshes is given in Figure 2.

To construct the conforming finite element space UT for a given mesh T , we use tensor-
product polynomials of degree at most p, namely the polynomial reference space is Û =
span{xk1x`2 | k, ` ≤ p}. As degrees of freedom, we use the values at the nodes XT , where XT
consists of the (p+ 1)× (p+ 1) tensor-product Gauss–Lobatto points of each element E ∈ T .
In case T has a hanging node, XT contains the Gauss–Lobatto points corresponding to the
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Figure 2. Illustration of T k, k = 1, 2, 3, with {hk} = {2
5 ,

1
5 ,

1
10}, Ω0 =

(−1, 1)2, W = 1
5 .

coarsest edge adjacent to the hanging node, but not the points corresponding to the finer
edges adjacent to the hanging node.

For the discretisation of s, we use the discontinuous finite element space S2
T , where ST is

given by

ST := {s ∈ L2(Ω) | s|Ω0 ≡ 0 and s ◦ φE ∈ Û for all E ∈ T : E ⊂ ΩABL}.

Let sE := s|E . The degrees of freedom of s ∈ S2
T are given by sE(x) for all E ∈ T and all

x ∈ XE , where XE := X{E} denotes the set of nodes on E.

We define the discretisation LT (u, s) : (UT ,S2
T ) → UT of the spatial operator (u, s) 7→

−β−1∇ · (α(∇u+ s)) such that

(βLT (u, s), w)T ,ML = (α(∇u+ s),∇w)T ∀w ∈ UT .

Here, (·, ·)T denotes the approximation of the L2 inner product (·, ·) using the tensor-product
(p+ 1)-point Gauss–Lobatto quadrature rule for each element in T . Furthermore, (·, ·)T ,ML

denotes the approximation of (·, ·) using a mass-lumping technique, i.e.

(u,w)T ,ML =
∑
x∈XT

u(x)w(x)σx,T ,

where σx,T :=
∫

Ωwx,T (y) dy and wx,T ∈ UT denotes the nodal basis function corresponding
to node x. We can give an explicit expression for LT :

LT (u, s)(x) =

(
α(∇u+ s),∇wx,T

)
T

β(x)σx,T
∀x ∈ XT .

For the projection operators, let Tj−1 + Tj denote the mesh constructed from elements
of Tj−1 and Tj by always selecting the finest elements. We define the projection operators
Πj : UTj−1 → UTj and ΠS

j : STj−1 → STj in such a way that

(Πju,w)Tj ,ML = (u,w)Tj−1+Tj ∀w ∈ UTj ,
(ΠS

j s, w)Tj = (s, w)Tj−1+Tj ∀w ∈ STj .

Furthermore, let E ∈ T k with k ≤ K − 1, and let TE = getSubelements(E). We define
the projection operator ΠE : UE := U{E} → UTE , used for the refinement criterion in (13), in
such a way that

(ΠEu,w){E} = (u,w)TE ∀w ∈ UE .
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We can give explicit expressions for these projection operators:

Πju(x) =

(
u,wx,Tj

)
Tj−1+Tj

σx,Tj
∀x ∈ XTj ,

(ΠS
j s)E(x) =

(
s, wx,E

)
Tj−1+Tj

σx,E
∀E ∈ Tj and x ∈ XE ,

ΠEu(x) =
(u,wx,E)TE

σx,E
∀x ∈ XE .

Here σx,E :=
∫
E wx,E(y) dy and wx,E ∈ SE denotes the discontinuous nodal basis function

corresponding to element E and node x.
For the time discretisation, let sn := s(·, tn). We define un+1/2 := 1

2(un + un+1) and

sn+1/2 := 1
2(sn + sn+1). We also define the discrete second-order time derivative D2

t u
n
j as in

(8) and we define the discrete time derivatives D2tu
n and Dts

n+1/2 as

D2tu
n :=

un+1 − un−1

2∆t
, Dts

n+1/2 :=
sn+1 − sn

∆t
.

The fully discrete finite element formulation can then be stated as follows: for j = 1, 2, . . . ,
find unj ∈ UTj for n : nj−1 − 1 ≤ n ≤ nj and snj ∈ STj for n : nj−1 ≤ n ≤ nj such that

D2
t u

n
j + (ζ1 + ζ2)D2tu

n
j + ζ1ζ2u

n
j + LTj (unj , snj ) = fTj (·, tn) at all x ∈ XTj ,(20a)

Dts
n+1/2
j,E + Z1s

n+1/2
j,E + Z2∇un+1/2

j |E = 0
at all x ∈ XE ,
∀E ∈ Tj ,

(20b)

for n : nj−1 + 1 ≤ n ≤ nj , and

unj = Πju
n
j−1 for n = nj−1 − 1 and n = nj−1,

snj = ΠS
j snj−1 for n = nj−1,

with u0
0 ≡ 0, u−1

0 ≡ 0, and s0 ≡ 0.
We can rewrite (20) as

un+1
j =

z̃1u
n−1
j + z̃2u

n
j + ∆t2(−LTj (unj , snj ) + fTj (·, tn))

z̃3
at all x ∈ XTj(21a)

sn+1
j,E = Z̃−1

3

(
Z̃1s

n
j,E + Z̃2∇un+1/2

j |E
) at all x ∈ XE ,

∀E ∈ Tj ,
(21b)

where

z̃1 := −1 +
1

2
∆t(ζ1 + ζ2), Z̃1 := I − 1

2
∆tZ1,

z̃2 := 2−∆t2ζ1ζ2, Z̃2 := −∆tZ2,

z̃3 := 1 +
1

2
∆t(ζ1 + ζ2), Z̃3 := I +

1

2
∆tZ1,

with I ∈ R2×2 the identity matrix.
For the discretisation of the source term f , recall that f = −∂2

t uI + β−1∇ · (α∇uI). One
can check that −∂2

t uI + β−1
0 ∇ · (α0∇uI) ≡ 0 and therefore we have −β0β

−1∂2
t uI + β−1∇ ·

(α0∇uI) ≡ 0. We can therefore write f = −(β−β0)β−1∂2
t uI +β−1∇· ((α−α0)∇uI). We can

discretise the time- and spatial derivatives in a similar way as before. The discrete source
term fT (·, tn) ∈ UT can then be given by

fT (x, tn) := −β(x)− β0

β(x)
D2
t u

n
I (x)−

(
(α− α0)∇unI ,∇wx,T

)
T

β(x)σx,T
∀x ∈ XT ,
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where unI := uI(·, tn). Note that, due to this discretisation, the discrete source term is still
zero in the exterior domain Ωex and for all tn > tf .

To discretise the characteristic function χE for a square element E = (x1,E , x1,E + hE) ×
(x2,E , x2,E + hE), we define

χE(x) =

1,
x1 ∈ [x1,E , x1,E + hE) ∪ ({x1,E + hE} ∩ {L1 +W}) and

x2 ∈ [x2,E , x2,E + hE) ∪ ({x2,E + hE} ∩ {L2 +W}),
0, otherwise.

(22)

Then the partition of unity property (15) is valid for every x ∈ Ω (not just a.e. x ∈ Ω) and,
in particular, for all nodes x ∈ XT K .

4.1.3. Algorithm for solving the Helmholtz equation. To solve the Helmholtz equation given in
(2), we use Algorithm 5 with a few small modifications given below. These modifications take
the absorbing boundary layer into account and ensure that all the steps are fully computable.

• At the start, we also initialise the auxiliary variables sh ← 0.
• After we compute uh ← project(uh, Th, T newh ), we also compute the auxiliary vari-

able sh ← projectS(sh, Th, T newh ), where the function snj = projectS(snj−1, Tj−1, Tj)
computes snj = ΠS

j snj−1.

• Instead of computing unewh ← doTimeStep(uh, u
old
h , Th, tn), we now compute the pair

(unewh , sh) ← doTimeStep(uh, u
old
h , sh, Th, tn), where we use the modified function

(un+1
j , sn+1

j ) = doTimeStep(unj , u
n−1
j , snj , Tj , tn) that computes un+1

j and sn+1
j with

the formulae in (21).
• For the stopping criterion given in (11), we do not take the supremum over all x ∈ Ω,

but instead we compute the supremum over all nodes x ∈ XTj . Similarly, for the
refinement criterion given in (13), we do not take the supremum over all x ∈ E, but
only over all nodes x ∈ XTE , where TE = getSubelements(E).
• For the function Uh = updateFT(Uh,∆U

n
j−1, Tj−1, Tj), we now compute Uh(x) ←

Uh(x) +χE(x)∆Unj−1,E(x) for all x ∈ XT K ∩E and all E ∈ Tj−1 \Tj , with χE defined

as in (22).

4.2. Numerical example in 1D. As a first numerical example, we consider the 1D domain
Ω = (−1, 1), with spatial parameters

α(x) =

{
1 + 3(1− 2x)2(1 + 2x)2, x ∈ (−1

2 ,
1
2),

1, otherwise,

β(x) = 1,

and an incoming plane wave UI(x) = eiωx/c0 , with c0 = 1. An illustration of α is given in
Figure 3.

For the numerical approximation, we consider an incoming wavelet of the form uI(x, t) =
ωψ(ω(t− x/c0)), with

ψ(ξ) =


(ξ − π)4(ξ + π)4

3840π(21− 2π2)
, ξ ∈ (−π, π),

0, otherwise.

An illustration of ψ is given in Figure 3.
At the boundary, we apply a perfectly matched layer of width W = c0π/ω, i.e. of width

half a wave length. The equations for the absorbing boundary layer in 1D are the same as
those in 2D given in (19), but with ζ2 ≡ 0 and with a scalar field s(x) instead of s(x). We
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Figure 3. Illustration of parameter α(x) (left) and wavelet ψ(ξ) (right).

choose the damping parameter ζ1(x) = ζ(x) as in [13], where

ζ(x) =

| log(R)| 3
2W

(
W−(1−|x|)

W

)2
, |x| > 1

0, otherwise,
(23)

with R = 10−10 the expected artificial reflection.
For the time step size, we choose ∆t = Tup/m, with m the smallest positive integer such

that

∆t =
Tup
m
≤ cCFL

2√
λ∗max

,

where the CFL number is chosen as cCFL = 0.9, and where λ∗max is an upper bound of the
largest eigenvalue λmax of the discrete spatial differential operator β−1∇ · α∇, given by

λ∗max :=
1

h2
K

αmax

βmin
sup

u∈Û\{0}

(∇u,∇u){Ê}

(u, u){Ê}
,

where αmax := supx∈Ω α(x), and βmin := infx∈Ω β(x). A smaller value of Tup results in fewer
neighbouring elements being marked for refinement, and therefore in fewer degrees of freedom
on average. However, it also means that the mesh needs to be updated more frequently. In
other words, choosing Tup very small might slow down the method due to computational
overhead, while choosing Tup very large might render the method less efficient due to many
additional neighbouring elements being refined. In the numerical examples, we choose Tup as
half a time-period, i.e. Tup = πω−1.

For the spatial discretisation, we use quadratic elements (so degree p = 2). We compute for
the time interval (t0, tstop) = (t0, Tjstop), where t0 = −0.5−πω−1 and where jstop is determined
using the stopping criterion in (11) with ε0 = ω/100. For the mesh refinement criterion in
(13), we use η0 = ω/100. An overview of the L2(Ω0) error err2 := ‖US − Uh(·, Tjstop)‖Ω0

and average number of degrees of freedom nDOF := 1
jstop

∑jstop
j=1 |X (Tj)| is given in Table 1

for the adapted finite element method. The results are compared with the classical finite
element method using a uniform mesh of width h = hK and using the same polynomial
degree, time step size, and stopping time as for the adapted finite element method. From
this table, we can see that the error of the adapted finite element method and classical finite
element method behave very similarly, whereas the average number of degrees of freedom
grows at a significantly slower rate for the adapted finite element method as the frequency
ω increases. In particular, Tables 1 and 4 illustrate that the average number of degrees of
freedom is almost independent of ω for the adaptive finite element method in 1D.
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AFEM FEM
ω {hk} Tup m jstop err2 nDOF err2 nDOF

10π {1
5 ,

1
50}

1
10 28 20 1.40e-02 1.14e+02 1.00e-02 2.21e+02

20π {1
5 ,

1
10 ,

1
100}

1
20 28 36 1.67e-02 1.43e+02 1.71e-02 4.21e+02

40π {1
5 ,

1
20 ,

1
200}

1
40 28 63 3.92e-02 1.78e+02 3.93e-02 8.21e+02

80π {1
5 ,

1
40 ,

1
400}

1
80 28 123 6.49e-02 2.12e+02 5.92e-02 1.62e+03

Table 1. Estimated L2(Ω0) error and average number of degrees of freedom
for the quadratic adapted (AFEM) and classical (FEM) finite element approx-
imation to the 1D Helmholtz problem for different angular frequencies ω. To
estimate the error, we take the numerical approximation on a uniform mesh
of width hK/2 as reference solution.

To compute the errors in Table 1, we use the discrete solution obtained on a uniform mesh
of width hK/2 as reference solution. However, this error does not take into account the error
produced by the absorbing boundary layer or the truncation of the wave field at time tstop.
To measure these errors, we compute the following numerical approximations and reference
solutions.

• Uh: the adapted finite element approximation considered in Table 1.
• U1: the reference solution used in Table 1.
• U2: similar to U1, but using the exact absorbing boundary condition ∂tu+ c0∂xu = 0

on ∂Ω0 instead of an absorbing boundary layer.
• U3: similar to U2, but using a time interval (t0, t0 + 100) instead of (t0, tstop) (tstop−
t0 < 2.5 for all cases in Table 1).

The difference Uh−U1 indicates the error due to the spatial and time discretisation, U1−U2

indicates the error due to the absorbing boundary layer, and U2−U3 indicates the error due
to the truncation in time. An overview of these errors is given in Table 2. From this table,
we can see that the error is dominated by the discretisation error, whereas the errors due to
the absorbing boundary layer and truncation in time are negligible. We will use this as a
motivation to also estimate the error by ‖Uh − U1‖Ω0 in the 2D case.

ω ‖Uh − U1‖Ω0 ‖U1 − U2‖Ω0 ‖U2 − U3‖Ω0

10π 1.40e-02 2.42e-04 4.50e-03
20π 1.67e-02 2.00e-04 3.45e-03
40π 3.92e-02 1.38e-04 3.94e-03
80π 6.49e-02 1.21e-04 2.12e-03

Table 2. Estimated L2(Ω0) error due to the spatial and time discretisation
‖Uh − U1‖Ω0 , due to the absorbing boundary layer ‖U1 − U2‖Ω0 , and due to
the truncation in time ‖U2 − U3‖Ω0 for the 1D test cases.

An illustration of uh for the case ω = 40π and an illustration of the corresponding space-
time mesh as described in Section 3.3 are given in Figure 4.

4.3. Numerical example in 2D: incoming plane wave. For the first 2D example, we
consider a domain Ω0 = (−1, 1)2, with spatial parameters

α(x1, x2) =

{
1 + 3(1− 2

√
x2

1 + x2
2)2(1 + 2

√
x2

1 + x2
2)2,

√
x2

1 + x2
2 ≤ 1

2 ,

1, otherwise,

β(x1, x2) = 1,
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Figure 4. Illustration of uh and the space-time mesh described in Section
3.3 for the 1D test case with ω = 40π. In the actual algorithm, we never
explicitly compute the space-time mesh.

and an incoming plane wave UI(x1, x2) = eiωx1/c0 , with c0 = 1. An illustration of α is given
in Figure 5.

Figure 5

For the numerical approximation, we consider an incoming wavelet of the form uI(x1, x2, t) =
ωψ(ω(t − x1/c0)), with ψ as in the 1D example. At the boundary, we apply a perfectly
matched layer of width W = c0π/ω, i.e. of width half a wave length. We choose the damping
parameters ζ1(x1) = ζ(x1) and ζ2(x2) = ζ(x2), with ζ(x) as in the 1D example.

We compute for the time interval (t0, tstop) = (t0, Tjstop), where t0 = −0.5− πω−1. For the
spatial discretisation, we use biquadratic elements. The time step size ∆t and the parameters
η0 and ε0 are chosen in the same way as in the 1D case. We compute the L2(Ω0) error and
compare the results with a classical finite element method with a uniform mesh in the same
way as we did for the 1D case. The results are presented in Table 3. From this table, we can
see that, just as in the 1D case, the errors of the adaptive finite element method and classical
finite element method behave similarly, whereas the average number of degrees of freedom
grows at a significantly slower rate for the adapted finite element method as ω increases.
In particular, Table 4 illustrates that for the adaptive finite element method, the average
number of degrees of freedom grows almost linearly with ω instead of as ω2.

Snapshots of the time-dependent wave field for different frequencies are shown in Figure
6. This figure shows that the wavefront gets sharper as ω increases, while away from the
wavefront, e.g. on the left of x1 = 0, the wave field is similar for different frequencies. An



AN ADAPTIVE FEM FOR SCATTERING PROBLEMS 19

AFEM FEM
ω {hk} Tup m jstop err2 nDOF err2 nDOF

10π {1
5 ,

1
50}

1
10 39 22 7.47e-03 1.93e+04 4.97e-03 4.88e+04

20π {1
5 ,

1
10 ,

1
100}

1
20 39 39 8.71e-03 4.15e+04 8.43e-03 1.77e+05

40π {1
5 ,

1
20 ,

1
200}

1
40 39 73 1.77e-02 9.33e+04 1.74e-02 6.74e+05

80π {1
5 ,

1
40 ,

1
400}

1
80 39 139 3.48e-02 2.09e+05 3.44e-02 2.63e+06

Table 3. Estimated L2(Ω0) error and average number of degrees of freedom
for the biquadratic adapted (AFEM) and classical (FEM) finite element ap-
proximation to the 2D plane wave Helmholtz problem for different angular
frequencies ω. To estimate the error, we take the numerical approximation on
a uniform mesh of width hK/2 as the exact solution.

1D 2D
ω nDOF ratio rate nDOF ratio rate

10π 1.14e+02 1.93e+04
20π 1.43e+02 1.25 0.33 4.15e+04 2.15 1.10
40π 1.78e+02 1.24 0.31 9.33e+04 2.25 1.17
80π 2.12e+02 1.19 0.25 2.09e+05 2.24 1.16

Table 4. Estimated growth rate of the average number of degrees of freedom
nDOF with respect to the frequency ω for the adaptive finite element method.
The results correspond to the incoming plane wave problem in 1D and 2D.

illustration of the total time-harmonic field and the error for the case ω = 40π is given in
Figure 7.

Figure 6. Snapshot of uh at time t = t0 + 0.70 for the 2D plane wave test
case with ω = 20π (left), ω = 40π (middle), and ω = 80π (right).

To illustrate the adaptive mesh refinement procedure, we define, for each set of parent
elements P, the function level(P) : Ω→ R as

level(P)(x) := max({0} ∪ {k | x ∈ E for some E ∈ P ∩ T k}).

In other words, level(P)(x) returns the level of the finest element in P that contains x. If no
element in P contains x, then level(P)(x) returns 0. An illustration of the mesh adaptation
algorithm is given in Figure 8.

4.4. Numerical example in 2D: point source. As a next 2D numerical example, we
consider the Helmholtz equation of the form in (2) with a slightly smeared out point source
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Figure 7. Total time-harmonic field Utot = Uh+UI (left) and error |US−Uh|
(right) for the 2D plane wave test case with ω = 40π.

Figure 8. Top: illustration of wave field uj−1 and the updated wave field
uj at time Tj = t0 + 0.65, for the 2D plane wave test case with ω = 40π
using three levels of nested meshes with {hk} = {1

5 ,
1
20 ,

1
200}. Bottom: parent

elements level(Pj−1), marked elements level(P∗j−1), and marked neighbour

elements level(Pj). Here, Pj−1, P∗j−1, and Pj are defined as in Algorithm 2.

F of the form

F (x1, x2) :=
200

λ2
f0

(
ρ(x1, x2)

1
2λ

)
f0(ξ) :=

{
(ξ2 − 1)4, |ξ| ≤ 1,

0, otherwise,
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where λ = 2π/k0 denotes the wave length in the exterior domain, k0 = ω/c0 denotes the

wave number in the exterior domain, ρ(x1, x2) =
√

(x1 − x1,0)2 + (x2 − x2,0)2 denotes the
distance to (x1,0, x2,0), and (x1,0, x2,0) := (0.5, 0.5) is the position of the point source. Note
that the support of F is centered at (x1,0, x2,0) and has a diameter of one wave length λ.
The domain, absorbing boundary layer, and spatial parameters α and β are chosen as in the
previous example.

For the numerical approximation, we use the same spatial discretisation and parameters
η0 and ε0 as in the previous example. The initial time is t0 = −πω−1. Similar to the previous
examples, we compare the numerical results of the adaptive method with the classical finite
element method for different frequencies. The results are presented in Table 5. Again, the
accuracy of the adaptive and classical method are comparable, whereas the average number of
degrees of freedom is significantly smaller for the adaptive method and grows almost linearly
with ω instead of quadratically.

AFEM FEM
ω {hk} Tup m jstop err2 nDOF err2 nDOF

10π {1
5 ,

1
50}

1
10 39 55 1.26e-02 9.79e+03 8.07e-03 4.88e+04

20π {1
5 ,

1
10 ,

1
100}

1
20 39 65 1.16e-02 2.81e+04 1.01e-02 1.77e+05

40π {1
5 ,

1
20 ,

1
200}

1
40 39 87 1.55e-02 7.89e+04 1.40e-02 6.74e+05

80π {1
5 ,

1
40 ,

1
400}

1
80 39 147 2.14e-02 1.82e+05 1.96e-02 2.63e+06

Table 5. Estimated L2(Ω0) error and average number of degrees of freedom
for the biquadratic adapted (AFEM) and classical (FEM) finite element ap-
proximation to the 2D point source Helmholtz problem for different angular
frequencies ω. To estimate the error, we take the numerical approximation on
a uniform mesh of width hK/2 as the exact solution.

An illustration of the adaptive method is given in Figure 9. The left image of Figure 9
shows a sharp circular wave front generated by the point source and an adapted mesh that
is only refined near this wave front. The right image shows the approximated time-harmonic
wave field.

Figure 9. Snapshot of the wave field uh at time Tj = t0 + 1 (left) and time-
harmonic field Uh (right) for the 2D point source test case with ω = 40π.

4.5. Numerical example in 2D: trapping mode. As a final 2D numerical example, we
consider a scattering problem with a sound-soft scatterer that can trap waves. The scatterer
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is illustrated in Figure 10. The domain, absorbing boundary layer, and incoming wave are
chosen as in Section 4.3 and the spatial parameters are given by α ≡ 1, β ≡ 1.

For the numerical test, we only consider the case ω = 30π. We use two nested meshes with
mesh size {hk} = { 1

10 ,
1

150} and with biquadratic elements, a mesh update time Tup = 1/30,

a mesh refinement criterion ξ0 = 1
100ω and a stopping criterion ε0 = 5

100ω. The initial

time is t0 = 0.4 − πω−1, the number of time steps between each mesh update is m = 20,
and the stopping criterion is triggered at tstop = Tjstop , with jstop = 332. We compare the
results of the adaptive finite element method and classical finite element method as in the
previous examples. The results are listed in Table 6. An illustration of the adapted mesh
and of the computed time-harmonic wave field is also given in Figure 10. Due to trapping, it
takes much longer before the wave field vanishes, which makes time-domain approaches less
efficient. Furthermore, as illustrated in Figure 10, a large region around the trapping area
requires a fine mesh, which makes the adaptive method less efficient. The average number
of degrees of freedom is still smaller than for the classical finite element method, since the
adaptive method correctly determines in which part of the domain the wave field is active.

ω = 30π err2 nDOF
AFEM 1.77e-01 9.95e+04
FEM 1.57e-01 3.31e+05

Table 6. Estimated L2(Ω0) error and average number of degrees of free-
dom for the biquadratic adapted (AFEM) and classical (FEM) finite element
approximation to the 2D trapping mode Helmholtz problem for angular fre-
quencies ω = 30π. To estimate the error, we take the numerical approximation
on a uniform mesh of width hK/2 = 1/300 as the exact solution.

Figure 10. Snapshot of the wave field uh at time Tj = t0 + 2 (left) and total
time-harmonic field Utot = Uh+UI (right) for the 2D trapping mode test case
with ω = 30π.

5. Conclusion

We considered the time-harmonic acoustic scattering problem with smoothly varying co-
efficients for an incoming plane wave of angular frequency ω. The proposed method consists
of solving the wave equation in the time domain for a single incoming plane wavelet using
an adaptive mesh. The time-harmonic solution is then recovered by computing the Fourier
transform in time using an adaptive algorithm that exploits the reduced number of degrees
of freedom corresponding to the adapted meshes. We compared our adaptive finite element
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method to a standard classical finite element time domain method and show that the ac-
curacy is comparable, whereas the average number of degrees of freedom for our adaptive
method grows at a significantly smaller rate as the frequency ω increases. In particular,
numerical examples indicate that the average number of degrees of freedom for the adaptive
finite element method scales almost like O(ωd−1), with d the number of dimensions in space,
instead of O(ωd). Numerical examples also demonstrate that our method can be extended
to include external source terms and sound-soft scatterers. The method, however, provides
only a limited advantage in the presence of trapping modes.

Appendix A. Limiting amplitude principle

Let U = U(x) be the solution to the Helmholtz problem

−ω2U − β−1∇ · (α∇U) = F in Rd,(24a)

[far field radiation condition on U ],(24b)

and let u = u(x, t) be the solution to the wave problem in the time domain

∂2
t u− β−1∇ · (α∇u) = f in Rd × (t0,∞),(25a)

[zero initial conditions on u at t = t0],(25b)

with spatial parameters α = α(x) and β = β(x), source terms f = f(x, t) and F = F (x),
and frequency ω > 0.

We assume that α(x) ≥ αmin and β(x) ≥ βmin for x ∈ Rd, and that α(x) ≡ α0 and
β(x) ≡ β0 for x ∈ Rd\Ωin, where Ωin is a bounded domain and αmin, βmin, α0, and β0 are
positive constants. We also assume that f(·, t) and F are supported within Ωin.

Let U be a Hilbert space on a bounded domain Ω with Ω ⊃ Ωin. The limiting amplitude
principle states that, if f is of the form f(x, t) = F (x)e−iωt, then u(·, t) converges in U to
Ue−iωt as t tends to infinity. In particular, we can define the limiting amplitude principle as
follows:

Definition A.1 (limiting amplitude principle). Let u be the solution to the wave equation
given in (25), with f(x, t) := F (x)e−iωt for all t > T for some T > t0, and let U be the
solution to the Helmholtz equation given in (24). The limiting amplitude principle states that

(26) lim
t→∞

∥∥u (·, t)− U (·) e−iωt
∥∥
U = 0.

The following is known about the validity of the limiting amplitude principle, with supp(F ) ⊂
Ω ⊂ Rd.

• For d = 3, (26) was derived in [43] for F ∈ L2(Ω), α ∈ C2(R3), β ∈ C1(R3), U = L2(Ω).
• For d ≥ 2, it follows from [15, Ch. 2] that (26) holds true for F ∈ L2(Ω), α ∈ C2(Rd),
β ≡ β0, U = H1(Ω).
• For d = 1, the form (26) of the limiting amplitude principle is not valid [14, Sect. 3]; a

modified form is currently under investigation and will be presented in a forthcoming
paper.

Whenever the limiting amplitude principle is valid for U = L2(Ω), we have the following
result.

Lemma A.2. Let u be the solution to (25) with a source term f that has compact support
in space and time. Extend u and f by zero to Rd × (−∞, t0) and define, for any frequency

ω > 0, Ũω := Ft[u](·,−ω) and F̃ω := Ft[f ](·,−ω), where Ft denotes the Fourier transform
with respect to time. If the limiting amplitude principle is valid for U = L2(Ω), then, for

any bounded domain Ω ⊂ Rd with supp(f(·, t)) ⊂ Ω, we have that Ũω is the solution to the

Helmholtz equation given in (24) with source term F = F̃ω.
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Proof. Fix ω > 0 and let U be the solution to (24) with source term F = F̃ω. We need to

show that Ũω = U . To do so, define G(t) := H(t)e−iωt, where H(t) denotes the Heaviside
step function (H(t) = 1 for t ≥ 0 and H(t) = 0 for t < 0). Also, let ∗t denote the convolution
operator with respect to time. If we apply G ∗t to (25), we obtain

∂2
t (G ∗t u)− β−1∇ · (α∇(G ∗t u)) = (G ∗t f) in Rd × (t0,∞),(27a)

[zero initial conditions on (G ∗t u) at t = t0].(27b)

Since f has finite support in time, we have that f(·, t) = 0 for all t > T for some T >

t0. Therefore, (G ∗t f) = e−iωtF̃ω for t > T . It then follows from the limiting amplitude
principle that (G ∗t u)(·, t) converges to e−iωtU as t → ∞ in U = L2(Ω). In other words,

limt→∞ e
iωt(G∗t u)(·, t) = U . By definition of Ũω, we also have that limt→∞ e

iωt(G∗t u) = Ũω
and hence, Ũω = U . �
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