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Some ancient georocks and meteorites possess remanent magnetization and thus store
valuable records of the past magnetic field on Earth and other planets or satellites.
Thanks to recent advances in magnetometry (SQUID microscope technique) offering
a possibility to measure magnetic fields of very low intensities, extraction of this relict
magnetic information has become reality. An endeavor to develop a robust and efficient
method for processing these data leads to a number of challenging problems such
as effective extension of the restricted measurement data and extraction of certain
features of the magnetization (typically, its mean value) without solving the entire
inverse problem. In the present work, we outline derivation of explicit formulas for

SQUID microscope (EAPS lab, MIT) estimation of the net magnetization moment vector of the sample in terms of the
vertical component of the magnetic field measured in the plane above it. Slice of a magnetized sample (basalt)
Magnetization of the sample is an unknown function/distribution P Motivation for the method
M (x, x3) = (M1 (x,x3) , M2 (x,x3) , M3 (X,X3))T, X = (X1,X2)T, Bs (21,22, h) Let us pretend that we have potential data on a sphere of radius r = Ry encompassing the sample, i.e. the
X 1= (x, x3) supported on a subset @ C R>. — _ m — left-hand side of
Representing the magnetic field in terms of the scalar potential ® yields A M (@, 20,5) | b : B o B
\ 1 My (t, t3) (rsinfcosp — t1) + My (t, t3) (rsinfsing — to) + M5 (t, t3) (rcos 6 — t3) 5
= - - S (r,0,0) =— 33 d’t.
B=-Vé+M = A=V M, A Q (r2—2r[(ticos ¢ + tysin@)sinf + t3cos O] + t7 + t5 + t3)
and so
1 vl (t, t3) Geometry of the model By harmonicity in the exterior of the sphere, we expand over spherical harmonics
® (x,x3) = _E///R3 - ) : 1/2d3t. ®(r.0.6) i 1 z/: 5i(0.6). S(0.0) P! (cosf) cos (j¢),  j >0,
— — t r,o, — 1 Cj ) ) ) = '
(’X "+ (6 —8) ) e r/“j:_l G / P/|J| (cos®@)sin(|j|¢), Jj <O,
Experimentally, the vertical component of the magnetic field produced by the ngnetlc sample ) and observe that oo = 0 and
1 3(h— ts) [Mi (t, t5) (= 1) + Mo (t, 15) (3o — 22)] + M (&, 83) (2 (h — 83)" — |x — t[° ; _ IR 1 1 1 ! 4mr 4r  Am !
Bs (x, h) = E///Q dt lim <¢7 (574,57, S1) >L2(SR) = <—3m2,3m3, —3m1> = <3C1,1,3C0,1,3C1,1> :

5/2 R
(Ix =t + (h - 1)) o
Then, we easily retrieve the net moment:

my — —3 <(D7 511>L2(SRO) . mo — —3 <(b, 51_1>L2(SR0) : ms3 = 3 <(D, 5?>L2(SRO) .

However, we have the data on the plane rather than on a sphere.

Is measured on a part of the horizontal plane at height x3 = h > 0.

» Goal: Knowing Bs(x, h) or ®(x, h) on R? or Dy := {x € R?: |[x| < A}, we want to estimate the net
magnetization moment of the sample

m = [[]o M (x) d3x € R® or, more generally, <M,xfle2> = []]o M (x) x{('llezd:%x c R » Kelvin transformation

22 —

for i ki, ko € {1,2,3}, Jj1, o€ {0,1,2}. Recall the Mobius transform Z—+: which maps upper half-plane to the unit disk preserving harmonicity. 3D
S S 1 S .
generalization of this is Kelvin transform K [f] (5) = f* (5) — ‘ — f (Rﬁ) , where & = (&, §2,§3)T,
§

—)

— S

:
- esé1 e2&s e? (& + Ro) . T
RE = Y g R L = (0.0. — R = /2Ry (Ry = h).

: <§%+§§+(§3+Ro)2’£%+£§+(§3+Ro)2’ 0+€%+€§+(§3+Ro)2> - F=0.0-R)T, e = V2R (Ro+ )

In practice, we have only partial measurements of the field. Without loss of generality, we assume the

—

Then:  Af(x,x3) =0, xs>h =  Af (g) — 0, H < Ry,

measurement area to be the disk, i.e. Bs(x, h) is available for x € Dj.

> Asymptotic continuation of partial data Application of this transform to the potential gives

: : : 1 i
From asymptotical behavior of Bs(x, h) for large x, using symmetry, // Bs (x, h) dxidx, = ™0 (Ro+ h)sinfcosg t1> + M, (t, t3) (

: 2A (ﬁ) ‘ M. (t, 1) ( 1+ cosf
o cee.0 - [[[ _— : :
Q4 Rov/3 (T T cosh) (R0+h)sin9cosqb_t . (Ro+h)sin95inqb_t (h—t)

0= [ [ Bs(x, h)dxadxo = [, Bs(x,h) dxadx, + ffRQ\DA Bs (x, h) dxidxo, 0 1+ cosd ' 1+ cosf ’ ’

we can estimate for the normal component of net moment

(Ro+ h)sinfsing
1+ cos 0

tz) + Ms (t, t3) (h — t3)
d°t.

Combining this with implication of Gauss theorem, 3/2

Unfortunately, because of more complicated angular dependence,

1
m3 = QA//D B3 (X, h) XmdXQ + @, (E) . <IC [(D] , 511>L2(SR0) >~ Mma, <lC [(b] : 51_1>L2(SR0) < My, <]C [(b] . 5{)>L2(SRO) < m3.
A
Performing the same asymptotical extension of the measurements in the previously obtained integral However, it is still true that R(')i_fpoo <’C [®], 511>L2(SR0) ~ my, R(')i_fpoo <’C 4], 51_1>L2(SR0) ~ my, namely,
formulas, we obtain estimates for the tangential components of the net moment »
1 _ m; =6 lim Rg// ® (x, h) : 5/2a’X1dx2, ie{1,2}.
m; = 2//0 Bs (x, h) x;dxydx, + O <Z) , i€ {1,2}. Ry—00 R? [Xlz 42+ (Ro + h)2
A

» Analysis in the Fourier domain Employing spherical harmonics expansion and a specially derived connection formula

, 1 5 5 . |
Define Fourier transform as F [f] (k) = f (k) = // f (x) e *dxydxs, k := (ki, kQ)T, and observe that K [0, ®] (5) = a2 (Ro +&3) (’C [®] (f) + 2RO, K [®] (f)) , £€Sg, we obtain
RQ

3
—2 2 . : Xi .
F (]x — t\z + H2) : (k) = T e=2mHIKl for H > 0. Then, representing the field as m; = 2 lim Rg// Bs (x, h) —madxdx, i €{1,2}.
H R0—>OO RQ 2 2 2 /
. . 5 3 xi + x5 + (Ro + h)
= _ e e v - > 2\ 2 .3
Bs (x, h) = 47r///Q [(h 2 (Ml (t, 1) OX1 |4 M (T 1) 0x) X3,,> M (L &) 0x3 |y} b t3)] (‘X 1 ) at Recovery of the normal component goes another way: it essentially stems from Poisson representation formula

2T
and denoting ()5 the vertical projection of the magnetization support set @, m3 = —2 lim /03/ Bs (pcosp, psinp, h) dep.
0

pP—r 00
Bs(k, h) =m / e~2m(h—ts)lK [/kl/wl (k, t3) + ikoMs (k, t3) + |k| M5 (k, t3)] dts.
Q3

Note that mi = ng M (0, t;) dt; and M (k, t3) is analytic in k. So we expand about k = 0 all the right-hand

side terms as well as the first integral in B; (k, h) = (ffDA + ff]R2\DA> e?"*X By (x, h) dxydx, and perform
asymptotic continuation in the second one. Matching terms of different smallness in k, we obtain a set of
relations whose combination yields higher-accuracy formulas for the tangential net moment components

4Xi2 1 :
m; = 2//DA (1 + 3A2> x;Bz (x, h) dxydxp + O (ﬁ) : i€ {1,2}.
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