Assignment #5 solutions

March 31, 2011

Chapter 5 / Section 5 / Problem 2

For any t € R, define

o(t) = || f +tgl®

Then

o(t) = (f +tg, [ +tg) =llgl*®> +2(f,9)t + | f|* >0

Non-negativity of this expression implies that

i >
min o(t) >0

Let us find the minimum explicitly.

¢'(t) = 2”9”2t+ 2(f,9) = to = — (|];|]C]2)
2 2
¢(t0): |(fag)| _2|(fag)‘ +||f|‘220 = |<f7g)|2§||f‘|2||g||2

gl lgl?

This furnishes the proof of the Schwarz inequality:

(Ll < - Nlgll



Chapter 5 / Section 6 / Problem 5

g (z,1) = gy (x,t) + elsin (5x), O<z<m

u(0,t)  =u(mt)=0
w(z,0) = wus(x,0) =sin (3x)
We notice that the operator (97 — c292) doesn’t change the form of non-homogeneous term e’ sin (5z), therefore this
term can be “killed” by an appropriate shift function.

Let

u(z,t) =v(z,t) + A- (' sin (5z))

where constant A is to be found from the condition on equation for v(x,t) to be homogeneous.
Compute

Ut = Vgt + A- €t sin (51‘)

Upy = Uge — 25A - e sin (5z)

Subbing this into the original PDE, we obtain

v (2, 1) = Pvge(z,t) + €' sin (52) [1 — (25¢* 4 1) A]

=0

Therefore,
B 1
© 25¢2+1

As one can see, the problem for v(z,t) also inherits boundary conditions of the original problem, and hence

vie(2,1) = Pvga(m,t), O<zx<m
v(0,t) =w(mt)=0
v(z,0) =—-A-sin(bz); vi(z,0)=sin(3z) — A-sin(5z)

This is homogeneous and thus familiar to us problem which has the general solution

NE

v(z,t) = [A,, cos (nct) + By, sin (net)] sin (nx)

n=1



From initial conditions:

v(z,0) = Z Ay sin (nx) = An=0 (¥n#5), As =—-A
n=1

vt(x,O)=ZBn~n-c-sin(nx) = ano(Vn;«é3,5),33:§,B5:—§

n=1

Plugging these into the general solution above, we obtain

{cos (5et) + é sin (5@)} sin (52)

1 1
U(.T, t) = % sin (3Ct) sin (313) — m

Now we get back to the original problem and write the final solution

1 1 1
u(z,t) = 3 sin (3ct) sin (3x) — BE 1 [cos (5ct) + e sin (5et) — et] sin (5z)

Chapter 6 / Section 1 / Problem 9

Au =0, 1<r<2

a)
The fact that the boundary conditions are spherically symmetric (don’t depend on angles) suggests the solution to possess
spherical symmetry as well:
u(r,0,¢) = u(r)
Then the PDE becomes an ODE that can be integrated by separation of variables (or by introducing v(r) = r - u(r)

which solves v = 0, as we did in class)

" 2 ! U/I 2 !
u +-u =0 = — == = logu’ = —2logr + log C
r U T _—
—(log w)’ =log(C1/72)



From boundary conditions we find

w(1)=100 =  Cp=Cy+100

C
W@)=— = S =—
4
Hence
Cl = —4’)/, CQ =100 — 4’7
4
u(r) = % + 100 — 4
b)

Since we have found the explicit solution, we see that it is monotonically decreasing function of radial variable r attain-
ing its maximal and minimal values on inner and outward boundaries respectively, which is in perfect agreement with

maximum /minimum principle for a harmonic function:

u(1) = 100, u(2) = 100 — 2y

c)

From the previous line it follows

w2)=20 =  100-2y=20 = =40



