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March 31, 2011

Chapter 5 / Section 5 / Problem 2

For any t ∈ R, de�ne

φ(t) := ‖f + tg‖2

Then

φ(t) = (f + tg, f + tg) = ‖g‖2t2 + 2(f, g)t+ ‖f‖2 ≥ 0

Non-negativity of this expression implies that

min
t∈R

φ(t) ≥ 0

Let us �nd the minimum explicitly.

φ′(t) = 2‖g‖2t+ 2(f, g) ⇒ t0 = − (f, g)

‖g‖2

φ(t0) =
|(f, g)|2

‖g‖2
− 2
|(f, g)|2

‖g‖2
+ ‖f‖2 ≥ 0 ⇒ |(f, g)|2 ≤ ‖f‖2 · ‖g‖2

This furnishes the proof of the Schwarz inequality:

|(f, g)| ≤ ‖f‖ · ‖g‖
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Chapter 5 / Section 6 / Problem 5


utt(x, t) = c2uxx(x, t) + et sin (5x) , 0 < x < π

u(0, t) = u(π, t) = 0

u(x, 0) = ut(x, 0) = sin (3x)

We notice that the operator
(
∂2t − c2∂2x

)
doesn't change the form of non-homogeneous term et sin (5x), therefore this

term can be �killed� by an appropriate shift function.

Let

u(x, t) = v(x, t) +A ·
(
et sin (5x)

)
where constant A is to be found from the condition on equation for v(x, t) to be homogeneous.

Compute

utt = vtt +A · et sin (5x)

uxx = uxx − 25A · et sin (5x)

Subbing this into the original PDE, we obtain

vtt(x, t) = c2vxx(x, t) + et sin (5x)
[
1−

(
25c2 + 1

)
A
]︸ ︷︷ ︸

=0

Therefore,

A =
1

25c2 + 1

As one can see, the problem for v(x, t) also inherits boundary conditions of the original problem, and hence


vtt(x, t) = c2vxx(x, t), 0 < x < π

v(0, t) = v(π, t) = 0

v(x, 0) = −A · sin (5x) ; vt(x, 0) = sin (3x)−A · sin (5x)

This is homogeneous and thus familiar to us problem which has the general solution

v(x, t) =

∞∑
n=1

[An cos (nct) +Bn sin (nct)] sin (nx)
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From initial conditions:

v(x, 0) =

∞∑
n=1

An sin (nx) ⇒ An = 0 (∀n 6= 5) , A5 = −A

vt(x, 0) =

∞∑
n=1

Bn · n · c · sin (nx) ⇒ Bn = 0 (∀n 6= 3, 5) , B3 =
1

3c
, B5 = −A

5c

Plugging these into the general solution above, we obtain

v(x, t) =
1

3c
sin (3ct) sin (3x)− 1

25c2 + 1

[
cos (5ct) +

1

5c
sin (5ct)

]
sin (5x)

Now we get back to the original problem and write the �nal solution

u(x, t) =
1

3c
sin (3ct) sin (3x)− 1

25c2 + 1

[
cos (5ct) +

1

5c
sin (5ct)− et

]
sin (5x)

Chapter 6 / Section 1 / Problem 9


∆u = 0, 1 < r < 2

u |r=1 = 100

∂u
∂r |r=2 = −γ

a)

The fact that the boundary conditions are spherically symmetric (don't depend on angles) suggests the solution to possess

spherical symmetry as well:

u(r, θ, φ) = u(r)

Then the PDE becomes an ODE that can be integrated by separation of variables (or by introducing v(r) = r · u(r)

which solves v′′ = 0, as we did in class)

u′′ +
2

r
u′ = 0 ⇒ u′′

u′︸︷︷︸
=(log u′)′

= −2

r
⇒ log u′ = −2 log r + logC1︸ ︷︷ ︸

=log(C1/r2)
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u′ =
C1

r2
⇒ u(r) = −C1

r
+ C2

From boundary conditions we �nd

u(1) = 100 ⇒ C2 = C1 + 100

u′(2) = −γ ⇒ C1

4
= −γ

Hence

C1 = −4γ, C2 = 100− 4γ

u(r) =
4γ

r
+ 100− 4γ

b)

Since we have found the explicit solution, we see that it is monotonically decreasing function of radial variable r attain-

ing its maximal and minimal values on inner and outward boundaries respectively, which is in perfect agreement with

maximum/minimum principle for a harmonic function:

u(1) = 100, u(2) = 100− 2γ

c)

From the previous line it follows

u(2) = 20 ⇒ 100− 2γ = 20 ⇒ γ = 40

4


