Assignment \#5 solutions

March 31, 2011

Chapter 5 / Section 5 / Problem 2

For any $t \in \mathbb{R}$, define

$$
\phi(t):=\|f+t g\|^{2}
$$

Then

$$
\phi(t)=(f+t g, f+t g)=\|g\|^{2} t^{2}+2(f, g) t+\|f\|^{2} \geq 0
$$

Non-negativity of this expression implies that

$$
\min _{t \in \mathbb{R}} \phi(t) \geq 0
$$

Let us find the minimum explicitly.

$$
\begin{gathered}
\phi^{\prime}(t)=2\|g\|^{2} t+2(f, g) \quad \Rightarrow \quad t_{0}=-\frac{(f, g)}{\|g\|^{2}} \\
\phi\left(t_{0}\right)=\frac{|(f, g)|^{2}}{\|g\|^{2}}-2 \frac{|(f, g)|^{2}}{\|g\|^{2}}+\|f\|^{2} \geq 0 \quad \Rightarrow \quad|(f, g)|^{2} \leq\|f\|^{2} \cdot\|g\|^{2}
\end{gathered}
$$

This furnishes the proof of the Schwarz inequality:

$$
|(f, g)| \leq\|f\| \cdot\|g\|
$$

Chapter 5 / Section 6 / Problem 5

$$
\begin{cases}u_{t t}(x, t) & =c^{2} u_{x x}(x, t)+e^{t} \sin (5 x), \quad 0<x<\pi \\ u(0, t) & =u(\pi, t)=0 \\ u(x, 0) & =u_{t}(x, 0)=\sin (3 x)\end{cases}
$$

We notice that the operator $\left(\partial_{t}^{2}-c^{2} \partial_{x}^{2}\right)$ doesn't change the form of non-homogeneous term $e^{t} \sin (5 x)$, therefore this term can be "killed" by an appropriate shift function.

Let

$$
u(x, t)=v(x, t)+A \cdot\left(e^{t} \sin (5 x)\right)
$$

where constant A is to be found from the condition on equation for $v(x, t)$ to be homogeneous.
Compute

$$
\begin{gathered}
u_{t t}=v_{t t}+A \cdot e^{t} \sin (5 x) \\
u_{x x}=u_{x x}-25 A \cdot e^{t} \sin (5 x)
\end{gathered}
$$

Subbing this into the original PDE, we obtain

$$
v_{t t}(x, t)=c^{2} v_{x x}(x, t)+e^{t} \sin (5 x) \underbrace{\left[1-\left(25 c^{2}+1\right) A\right]}_{=0}
$$

Therefore,

$$
A=\frac{1}{25 c^{2}+1}
$$

As one can see, the problem for $v(x, t)$ also inherits boundary conditions of the original problem, and hence

$$
\left\{\begin{array}{lll}
v_{t t}(x, t) & =c^{2} v_{x x}(x, t), & 0<x<\pi \\
v(0, t) & =v(\pi, t)=0 \\
v(x, 0) & =-A \cdot \sin (5 x) ; & v_{t}(x, 0)=\sin (3 x)-A \cdot \sin (5 x)
\end{array}\right.
$$

This is homogeneous and thus familiar to us problem which has the general solution

$$
v(x, t)=\sum_{n=1}^{\infty}\left[A_{n} \cos (n c t)+B_{n} \sin (n c t)\right] \sin (n x)
$$

From initial conditions:

$$
\begin{gathered}
v(x, 0)=\sum_{n=1}^{\infty} A_{n} \sin (n x) \quad \Rightarrow \quad A_{n}=0(\forall n \neq 5), A_{5}=-A \\
v_{t}(x, 0)=\sum_{n=1}^{\infty} B_{n} \cdot n \cdot c \cdot \sin (n x) \quad \Rightarrow \quad B_{n}=0(\forall n \neq 3,5), B_{3}=\frac{1}{3 c}, B_{5}=-\frac{A}{5 c}
\end{gathered}
$$

Plugging these into the general solution above, we obtain

$$
v(x, t)=\frac{1}{3 c} \sin (3 c t) \sin (3 x)-\frac{1}{25 c^{2}+1}\left[\cos (5 c t)+\frac{1}{5 c} \sin (5 c t)\right] \sin (5 x)
$$

Now we get back to the original problem and write the final solution

$$
u(x, t)=\frac{1}{3 c} \sin (3 c t) \sin (3 x)-\frac{1}{25 c^{2}+1}\left[\cos (5 c t)+\frac{1}{5 c} \sin (5 c t)-e^{t}\right] \sin (5 x)
$$

Chapter 6 / Section 1 / Problem 9

$$
\begin{cases}\Delta u=0, & 1<r<2 \\ \left.u\right|_{r=1}=100 & \\ \left.\frac{\partial u}{\partial r}\right|_{r=2}=-\gamma & \end{cases}
$$

a)

The fact that the boundary conditions are spherically symmetric (don't depend on angles) suggests the solution to possess spherical symmetry as well:

$$
u(r, \theta, \phi)=u(r)
$$

Then the PDE becomes an ODE that can be integrated by separation of variables (or by introducing $v(r)=r \cdot u(r)$ which solves $v^{\prime \prime}=0$, as we did in class)

$$
u^{\prime \prime}+\frac{2}{r} u^{\prime}=0 \Rightarrow \underbrace{\frac{u^{\prime \prime}}{u^{\prime}}}_{=\left(\log u^{\prime}\right)^{\prime}}=-\frac{2}{r} \Rightarrow \log u^{\prime}=\underbrace{-2 \log r+\log C_{1}}_{=\log \left(C_{1} / r^{2}\right)}
$$

$$
u^{\prime}=\frac{C_{1}}{r^{2}} \quad \Rightarrow \quad u(r)=-\frac{C_{1}}{r}+C_{2}
$$

From boundary conditions we find

$$
\begin{gathered}
u(1)=100 \quad \Rightarrow \quad C_{2}=C_{1}+100 \\
u^{\prime}(2)=-\gamma \quad \Rightarrow \quad \frac{C_{1}}{4}=-\gamma
\end{gathered}
$$

Hence

$$
\begin{gathered}
C_{1}=-4 \gamma, \quad C_{2}=100-4 \gamma \\
u(r)=\frac{4 \gamma}{r}+100-4 \gamma
\end{gathered}
$$

b)

Since we have found the explicit solution, we see that it is monotonically decreasing function of radial variable r attaining its maximal and minimal values on inner and outward boundaries respectively, which is in perfect agreement with maximum/minimum principle for a harmonic function:

$$
u(1)=100, \quad u(2)=100-2 \gamma
$$

c)

From the previous line it follows

$$
u(2)=20 \quad \Rightarrow \quad 100-2 \gamma=20 \quad \Rightarrow \quad \gamma=40
$$

