Assignment #2 solutions

March 31, 2011

Chapter 2 / Section 1 / Problem 10
Upy + Uzt — 20U = 0, u(z,0) = ¢(x), ug(x,0) = (x)

We start with factorization of the differential operator:
(3;6 + a@t) (83; + b@t) u=20 4 Uy + (CL + b)uxt + abuyy =0
Hence a+b =1, ab= —20. Take a =4, b = —5.
We want to change coordinates to (£, n) such that
Og= 1 0,4+ 4 -0

—om _ r=E+1 E=(bxz+1)/9
oz /¢ ot/ 0¢ - -

Oy= 1, -0,+ (=5) -0 t=4£ — 5 n=(4x—1t)/9
=90z /0n =at/on

Then the equation becomes very easy to solve:

=0 e uEn=ROG) & uet=F(Sers)+ 6 (H-u)

:=F(xz+t/5) =G (x—t/4)

Hence the general solution is

u(x,t) = Flx +t/5) + Gz — t/4),
where I, G arbitrary differentiable functions to be found from the initial data:

u(z,0) = F(z) + G(x) = ¢(x) F(z) + G(x) = ¢(x)

w(2,0) = LF'(2) - 16(2) = v(x) F(z) — 1G(x) = [7 (s)ds

(S

where we don’t write the constant of integration due to arbitrariness of sqg. Thus



Fla) = [6(a) +4 [} v(s)ds]
G(x) = & [6(x) = 5 [ w(s)ds]

Plugging this back into the general solution (1), we obtain

Nelio

u(z,t) =

S0 S0

z+t/5 z—t/4
[5(;5(33 +1/5) + 46(x — £/4) + 20 {/ w(s)ds — / w(s)dSH _

1 x+t/5
= 5 |50+ 1/5) + 60— /) + 20/ (s)ds
r—t/4
Chapter 2 / Section 2 / Problem 3
(2, 1) = Cgy (1) (2)
a)
dz—y)]”
Let v(z,t) := u(z — y, t). Then we compute vy (z,t) = up(x — y, t), Voo (2,1) = Uge(z —y, t) - {dy] .
x
~——
=1
But evaluating derivatives in (2) at © = = — y, we obtain
g (z =y, t) = Cuge(x — 3, t) = Ve (2,1) = gy (2, 1)
Hence we conclude that v(x,t) = u(z — y, t) solves the equation (2).
b)

Let us differentiate (2) with respect to z:

Utte (xa t) = C2Uzmx (.’t, t)

Now according to the Clairaut / Schwarz theorem, under assumption that « has continuous partial derivatives of the

third order, we can interchange the order of differentiation: s, (2,t) = g (z,t). Then

(o (@, 1)) = ¢ (g (@, 1)) 4

Thus u,(z,t) satisfies the wave equation (2).



c)

Set v(x,t) := u(x — y, t). Straightforward computations yield: vy (z,t) = a® - uy(az, at), vez(z,t) = a® - ugy(az, at)
Evaluating derivatives in (2) at ¢ = az, y = ay, we arrive at

ug(ax, at) = ug,(ax, at) -y b:ih e v (2,1) = gy (,t)
multiplying both sides by a

Therefore v(z,t) = u(ax, at) solves the equation (2).

Chapter 2 / Section 3 / Problem 6

Let u(x,t), v(x,t) be such that

ug(,t) = kg (x,t), O<z<l,t>0 ve(2,t) = kvge (2, 1), O<zx<l,t>0
U(O,t) = fl(t)7 U(l,t) = fQ(t)a t>0 ’ U(O7t) = gl(t)a U(l7t) = gQ(t)a t>0
u(z,0) = ¢(z), 0<z<l v(z,0) = P(x), 0<z<lI

Introduce w(z,t) := u(x,t) — v(z,t). By linearity, it solves the following problem

we(,t) = kwge (2,1), O<z<l,t>0
w(0,t) = fi(t) — g1(t), w(l,t) = fa(t) — g2(t), t>0

w(z,0) = ¢(z) —(x) O<z<l

Since we know that u(0,t) < v(0,t), u(l,t) < v(l,t), u(z,0) < v(x,0), we immediately have

w(0,t) = f1(t) —g1(t) <0
w(l,t) = fa(t) — g2(t) <0
w(x,0) = ¢(z) —P(r) <0

Therefore, applying maximum principle to w(z,t), we obtain

w(z,t) <0,0<x<,t>0

) — )

that is u(z,t) <wv(x,t) for 0 <z <[, t>0.



