Assignment \#2 solutions

March 31, 2011

Chapter 2 / Section 1 / Problem 10

$$
u_{x x}+u_{x t}-20 u_{t t}=0, \quad u(x, 0)=\phi(x), \quad u_{t}(x, 0)=\psi(x)
$$

We start with factorization of the differential operator:

$$
\left(\partial_{x}+a \partial_{t}\right)\left(\partial_{x}+b \partial_{t}\right) u=0 \quad \Leftrightarrow \quad u_{x x}+(a+b) u_{x t}+a b u_{t t}=0
$$

Hence $a+b=1, a b=-20$. Take $a=4, b=-5$.
We want to change coordinates to (ξ, η) such that

$$
\left\{\begin{array} { l }
{ \partial _ { \xi } = \underbrace { 1 } _ { = \partial x / \partial \xi } \cdot \partial _ { x } + \underbrace { 4 } _ { = \partial t / \partial \xi } \cdot \partial _ { t } } \\
{ \partial _ { \eta } = \underbrace { 1 } _ { = \partial x / \partial \eta } \cdot \partial _ { x } + \underbrace { (- 5) } _ { = \partial t / \partial \eta } \cdot \partial _ { t } }
\end{array} \Leftrightarrow \left\{\begin{array} { l }
{ x = \xi + \eta } \\
{ t = 4 \xi - 5 \eta }
\end{array} \Leftrightarrow \left\{\begin{array} { l }
{ \xi = (5 x + t) / 9 } \\
{ \eta = (4 x - t) / 9 }
\end{array} \Leftrightarrow \Leftrightarrow \left\{\begin{array}{l}
\end{array} \Leftrightarrow\right.\right.\right.\right.
$$

Then the equation becomes very easy to solve:

$$
u_{\xi \eta}=0 \quad \Leftrightarrow \quad u(\xi, \eta)=F_{0}(\xi)+G_{0}(\eta) \quad \Leftrightarrow \quad u(x, t)=\underbrace{F_{0}\left(\frac{5}{9}(x+t / 5)\right)}_{:=F(x+t / 5)}+\underbrace{G_{0}\left(\frac{4}{9}(x-t / 4)\right)}_{:=G(x-t / 4)}
$$

Hence the general solution is

$$
\begin{equation*}
u(x, t)=F(x+t / 5)+G(x-t / 4) \tag{1}
\end{equation*}
$$

where F, G arbitrary differentiable functions to be found from the initial data:

$$
\left\{\begin{array} { l }
{ u (x , 0) = F (x) + G (x) = \phi (x) } \\
{ u _ { t } (x , 0) = \frac { 1 } { 5 } F ^ { \prime } (x) - \frac { 1 } { 4 } G ^ { \prime } (x) = \psi (x) }
\end{array} \quad \Rightarrow \quad \left\{\begin{array}{l}
F(x)+G(x)=\phi(x) \\
\frac{1}{5} F(x)-\frac{1}{4} G(x)=\int_{s_{0}}^{x} \psi(s) d s
\end{array}\right.\right.
$$

where we don't write the constant of integration due to arbitrariness of s_{0}. Thus

$$
\left\{\begin{array}{l}
F(x)=\frac{5}{9}\left[\phi(x)+4 \int_{s_{0}}^{x} \psi(s) d s\right] \\
G(x)=\frac{4}{9}\left[\phi(x)-5 \int_{s_{0}}^{x} \psi(s) d s\right]
\end{array}\right.
$$

Plugging this back into the general solution (1), we obtain

$$
\begin{aligned}
u(x, t) & =\frac{1}{9}\left[5 \phi(x+t / 5)+4 \phi(x-t / 4)+20\left\{\int_{s_{0}}^{x+t / 5} \psi(s) d s-\int_{s_{0}}^{x-t / 4} \psi(s) d s\right\}\right]= \\
& =\frac{1}{9}\left[5 \phi(x+t / 5)+4 \phi(x-t / 4)+20 \int_{x-t / 4}^{x+t / 5} \psi(s) d s\right]
\end{aligned}
$$

Chapter 2 / Section 2 / Problem 3

$$
\begin{equation*}
u_{t t}(x, t)=c^{2} u_{x x}(x, t) \tag{2}
\end{equation*}
$$

a)

Let $v(x, t):=u(x-y, t)$. Then we compute $v_{t t}(x, t)=u_{t t}(x-y, t), v_{x x}(x, t)=u_{x x}(x-y, t) \cdot \underbrace{\left[\frac{d(x-y)}{d x}\right]^{2}}_{=1}$.
But evaluating derivatives in (2) at $x=x-y$, we obtain

$$
u_{t t}(x-y, t)=c^{2} u_{x x}(x-y, t) \quad \Rightarrow \quad v_{t t}(x, t)=c^{2} v_{x x}(x, t)
$$

Hence we conclude that $v(x, t)=u(x-y, t)$ solves the equation (2).
b)

Let us differentiate (2) with respect to x :

$$
u_{t t x}(x, t)=c^{2} u_{x x x}(x, t)
$$

Now according to the Clairaut / Schwarz theorem, under assumption that u has continuous partial derivatives of the third order, we can interchange the order of differentiation: $u_{t t x}(x, t)=u_{x t t}(x, t)$. Then

$$
\left(u_{x}(x, t)\right)=c^{2}\left(u_{x}(x, t)\right)_{x x}
$$

Thus $u_{x}(x, t)$ satisfies the wave equation (2).
c)

Set $v(x, t):=u(x-y, t)$. Straightforward computations yield: $v_{t t}(x, t)=a^{2} \cdot u_{t t}(a x, a t), v_{x x}(x, t)=a^{2} \cdot u_{x x}(a x, a t)$.
Evaluating derivatives in (2) at $x=a x, y=a y$, we arrive at

$$
u_{t t}(a x, a t)=c^{2} u_{x x}(a x, a t) \quad \quad \underset{\text { multiplying both sides by } a^{2}}{\Rightarrow} \quad v_{t t}(x, t)=c^{2} v_{x x}(x, t)
$$

Therefore $v(x, t)=u(a x, a t)$ solves the equation (2).

Chapter 2 / Section 3 / Problem 6

Let $u(x, t), v(x, t)$ be such that

$$
\left\{\begin{array}{lll}
u_{t}(x, t)=k u_{x x}(x, t), & 0<x<l, t>0 \\
u(0, t)=f_{1}(t), u(l, t)=f_{2}(t), & t>0 \\
u(x, 0)=\phi(x), & 0 \leq x \leq l
\end{array}, \quad \begin{cases}v_{t}(x, t)=k v_{x x}(x, t), \\
v(0, t)=g_{1}(t), v(l, t)=g_{2}(t), & t>0 \\
v(x, 0)=\psi(x), & 0 \leq x \leq l\end{cases}\right.
$$

Introduce $w(x, t):=u(x, t)-v(x, t)$. By linearity, it solves the following problem

$$
\begin{cases}w_{t}(x, t)=k w_{x x}(x, t), & 0<x<l, t>0 \\ w(0, t)=f_{1}(t)-g_{1}(t), w(l, t)=f_{2}(t)-g_{2}(t), & t>0 \\ w(x, 0)=\phi(x)-\psi(x) & 0 \leq x \leq l\end{cases}
$$

Since we know that $u(0, t) \leq v(0, t), u(l, t) \leq v(l, t), u(x, 0) \leq v(x, 0)$, we immediately have

$$
\left\{\begin{array}{l}
w(0, t)=f_{1}(t)-g_{1}(t) \leq 0 \\
w(l, t)=f_{2}(t)-g_{2}(t) \leq 0 \\
w(x, 0)=\phi(x)-\psi(x) \leq 0
\end{array}\right.
$$

Therefore, applying maximum principle to $w(x, t)$, we obtain

$$
w(x, t) \leq 0,0 \leq x \leq l, t \geq 0
$$

that is $u(x, t) \leq v(x, t)$ for $0 \leq x \leq l, t \geq 0$.

